今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会。不过还好网上有人总结了。吼吼,赶紧搬过来收藏备份。
基本公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'
1. 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)] --> dY/dx = [dy(ji)/dx]
2. 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) --> dy/dX =(Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'
3. 行向量Y'对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX'/dX = I
d(AX)'/dX = A'
4. 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' = (dY'/dX)'
5. 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)
d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'
重要结论:
d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' = (d(X'A')/dX)' = (A')' = A
d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X
6. 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。
7. 矩阵积对列向量求导法则:
d(uV)/dX = (du/dX)V + u(dV/dX)
d(UV)/dX = (dU/dX)V + U(dV/dX)
重要结论:
d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A
8. 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [ Dy/Dx(ij) ]
重要结论:
y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'
y = U'X'XU 则 dy/dX = 2XUU'
y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' -2VU' + 0 = 2(XU-V)U'
9. 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df'/dx)g+(dg/dx)f'
结论
d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:''是表示两次转置)
比较详细点的如下:
http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/
http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html
其他参考:
Contents
- Notation
- Derivatives of Linear Products
- Derivatives of Quadratic Products
Notation
- d/dx (y) isa vector whose (i) elementis dy(i)/dx
- d/dx (y) is a vectorwhose (i) elementis dy/dx(i)
- d/dx (yT)is a matrixwhose (i,j) elementis dy(j)/dx(i)
- d/dx (Y) is a matrixwhose (i,j) elementis dy(i,j)/dx
- d/dX (y) is a matrixwhose (i,j) elementis dy/dx(i,j)
Note that the Hermitian transpose is not used because complexconjugates are not analytic.
In the expressions below matrices andvectors A, B, C donot depend on X.
Derivatives of Linear Products
- d/dx (AYB) =A * d/dx (Y)* B
-
- d/dx (Ay) =A * d/dx (y)
- d/dx (xTA) =A
-
- d/dx (xT) =I
- d/dx (xTa) =d/dx (aTx)= a
- d/dX (aTXb)= abT
-
- d/dX (aTXa)= d/dX (aTXTa)= aaT
- d/dX (aTXTb)= baT
- d/dx (YZ) =Y * d/dx (Z)+ d/dx (Y) *Z
Derivatives of Quadratic Products
- d/dx (Ax+b)TC(Dx+e)= ATC(Dx+e) + DTCT(Ax+b)
-
- d/dx (xTCx)= (C+CT)x
-
- [C:symmetric]: d/dx (xTCx)= 2Cx
- d/dx (xTx)= 2x
- d/dx (Ax+b)T (Dx+e)= AT (Dx+e) + DT (Ax+b)
-
- d/dx (Ax+b)T (Ax+b)= 2AT (Ax+b)
- [C:symmetric]: d/dx (Ax+b)TC(Ax+b)= 2ATC(Ax+b)
- d/dX (aTXTXb)= X(abT +baT)
-
- d/dX (aTXTXa)= 2XaaT
- d/dX (aTXTCXb)= CTXabT +CXbaT
-
- d/dX (aTXTCXa)= (C +CT)XaaT
- [C:Symmetric] d/dX (aTXTCXa)= 2CXaaT
- d/dX ((Xa+b)TC(Xa+b))=(C+CT)(Xa+b)aT
Derivatives of Cubic Products
- d/dx (xTAxxT)=(A+AT)xxT+xTAxI
Derivatives of Inverses
- d/dx (Y-1)= -Y-1d/dx (Y)Y-1
Derivative of Trace
Note: matrix dimensions must result inan n*n argument fortr().
- d/dX (tr(X))= I
- d/dX (tr(Xk))=k(Xk-1)T
- d/dX (tr(AXk))= SUMr=0:k-1(XrAXk-r-1)T
- d/dX (tr(AX-1B))= -(X-1BAX-1)T
- d/dX (tr(AX-1))=d/dX (tr(X-1A))= -X-TATX-T
- d/dX (tr(ATXBT))= d/dX (tr(BXTA))= AB
- d/dX (tr(XAT))= d/dX (tr(ATX))=d/dX (tr(XTA))= d/dX (tr(AXT)) =A
- d/dX (tr(AXBXT))= ATXBT + AXB
- d/dX (tr(XAXT))= X(A+AT)
- d/dX (tr(XTAX))= XT(A+AT)
- d/dX (tr(AXTX))= (A+AT)X
- d/dX (tr(AXBX))= ATXTBT + BTXTAT
- [C:symmetric] d/dX (tr((XTCX)-1A)= d/dX (tr(A(XTCX)-1)= -(CX(XTCX)-1)(A+AT)(XTCX)-1
- [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX))= d/dX (tr((XTBX)(XTCX)-1)= -2(CX(XTCX)-1)XTBX(XTCX)-1 +2BX(XTCX)-1
Derivative of Determinant
Note: matrix dimensions must result inan n*n argument fordet().
- d/dX (det(X))= d/dX (det(XT))= det(X)*X-T
-
- d/dX (det(AXB)) =det(AXB)*X-T
- d/dX (ln(det(AXB)))= X-T
- d/dX (det(Xk))= k*det(Xk)*X-T
- d/dX (ln(det(Xk)))= kX-T
- [Real] d/dX (det(XTCX))=det(XTCX)*(C+CT)X(XTCX)-1
-
- [C: Real,Symmetric] d/dX (det(XTCX))= 2det(XTCX)*CX(XTCX)-1
- [C: Real,Symmetricc] d/dX (ln(det(XTCX)))= 2CX(XTCX)-1
Jacobian
If y is a functionof x,then dyT/dx isthe Jacobian matrixof y with respectto x.
Its determinant,|dyT/dx|, isthe Jacobian of y withrespect to x andrepresents the ratio of thehyper-volumes dy and dx.The Jacobian occurs when changing variables in an integration:Integral(f(y)dy)=Integral(f(y(x))|dyT/dx|dx).
Hessian matrix
If f is a functionof x then the symmetricmatrixd2f/dx2 = d/dxT(df/dx)is the Hessian matrix off(x). A valueof x for whichdf/dx = 0 correspondsto a minimum, maximum or saddle point according to whether theHessian is positive definite, negative definite or indefinite.
- d2/dx2 (aTx)= 0
- d2/dx2 (Ax+b)TC(Dx+e)= ATCD + DTCTA
-
- d2/dx2 (xTCx)= C+CT
-
- d2/dx2 (xTx)= 2I
- d2/dx2 (Ax+b)T (Dx+e)= ATD + DTA
-
- d2/dx2 (Ax+b)T (Ax+b)= 2ATA
- [C:symmetric]: d2/dx2 (Ax+b)TC(Ax+b)= 2ATCA





