LDA之Python实现


LDA(Latent Dirichlet allocation)模型是一种常用而用途广泛地概率主题模型。其实现一般通过Variational inference和Gibbs Samping实现。

这里贴出基于Python的第三方模块改写的LDA类及实现。

  1 #coding:utf-8  
  2 import numpy as np  
  3 import lda  
  4 import lda.datasets  
  5 import jieba  
  6 import codecs  
  7   
  8   
  9 class LDA_v20161130():  
 10     def __init__(self, topics=2):  
 11         self.n_topic = topics  
 12         self.corpus = None  
 13         self.vocab = None  
 14         self.ppCountMatrix = None  
 15         self.stop_words = [u'', u'', u'', u'', u'', u'·', u'', u' ', u'', u'', u'', u'\n']  
 16         self.model = None  
 17   
 18     def loadCorpusFromFile(self, fn):  
 19         # 中文分词  
 20         f = open(fn, 'r')  
 21         text = f.readlines()  
 22         text = r' '.join(text)  
 23   
 24         seg_generator = jieba.cut(text)  
 25         seg_list = [i for i in seg_generator if i not in self.stop_words]  
 26         seg_list = r' '.join(seg_list)  
 27         # 切割统计所有出现的词纳入词典  
 28         seglist = seg_list.split(" ")  
 29         self.vocab = []  
 30         for word in seglist:  
 31             if (word != u' ' and word not in self.vocab):  
 32                 self.vocab.append(word)  
 33   
 34         CountMatrix = []  
 35         f.seek(0, 0)  
 36         # 统计每个文档中出现的词频  
 37         for line in f:  
 38             # 置零  
 39             count = np.zeros(len(self.vocab),dtype=np.int)  
 40             text = line.strip()  
 41             # 但还是要先分词  
 42             seg_generator = jieba.cut(text)  
 43             seg_list = [i for i in seg_generator if i not in self.stop_words]  
 44             seg_list = r' '.join(seg_list)  
 45             seglist = seg_list.split(" ")  
 46             # 查询词典中的词出现的词频  
 47             for word in seglist:  
 48                 if word in self.vocab:  
 49                     count[self.vocab.index(word)] += 1  
 50             CountMatrix.append(count)  
 51         f.close()  
 52         #self.ppCountMatrix = (len(CountMatrix), len(self.vocab))  
 53         self.ppCountMatrix = np.array(CountMatrix)  
 54   
 55         print "load corpus from %s success!"%fn  
 56   
 57     def setStopWords(self, word_list):  
 58         self.stop_words = word_list  
 59   
 60     def fitModel(self, n_iter = 1500, _alpha = 0.1, _eta = 0.01):  
 61         self.model = lda.LDA(n_topics=self.n_topic, n_iter=n_iter, alpha=_alpha, eta= _eta, random_state= 1)  
 62         self.model.fit(self.ppCountMatrix)  
 63   
 64     def printTopic_Word(self, n_top_word = 8):  
 65         for i, topic_dist in enumerate(self.model.topic_word_):  
 66             topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]  
 67             print "Topic:",i,"\t",  
 68             for word in topic_words:  
 69                 print word,  
 70             print  
 71   
 72     def printDoc_Topic(self):  
 73         for i in range(len(self.ppCountMatrix)):  
 74             print ("Doc %d:((top topic:%s) topic distribution:%s)"%(i, self.model.doc_topic_[i].argmax(),self.model.doc_topic_[i]))  
 75   
 76     def printVocabulary(self):  
 77         print "vocabulary:"  
 78         for word in self.vocab:  
 79             print word,  
 80         print  
 81   
 82     def saveVocabulary(self, fn):  
 83         f = codecs.open(fn, 'w', 'utf-8')  
 84         for word in self.vocab:  
 85             f.write("%s\n"%word)  
 86         f.close()  
 87   
 88     def saveTopic_Words(self, fn, n_top_word = -1):  
 89         if n_top_word==-1:  
 90             n_top_word = len(self.vocab)  
 91         f = codecs.open(fn, 'w', 'utf-8')  
 92         for i, topic_dist in enumerate(self.model.topic_word_):  
 93             topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]  
 94             f.write( "Topic:%d\t"%i)  
 95             for word in topic_words:  
 96                 f.write("%s "%word)  
 97             f.write("\n")  
 98         f.close()  
 99   
100     def saveDoc_Topic(self, fn):  
101         f = codecs.open(fn, 'w', 'utf-8')  
102         for i in range(len(self.ppCountMatrix)):  
103             f.write("Doc %d:((top topic:%s) topic distribution:%s)\n" % (i, self.model.doc_topic_[i].argmax(), self.model.doc_topic_[i]))  
104         f.close()  

 

 1 if __name__=="__main__":  
 2     _lda = LDA_v20161130(topics=20)  
 3     stop = [u'!', u'@', u'#', u',',u'.',u'/',u';',u' ',u'[',u']',u'$',u'%',u'^',u'&',u'*',u'(',u')',  
 4             u'"',u':',u'<',u'>',u'?',u'{',u'}',u'=',u'+',u'_',u'-',u'''''''']  
 5     _lda.setStopWords(stop)  
 6     _lda.loadCorpusFromFile(u'C:\\Users\Administrator\Desktop\\BBC.txt')  
 7     _lda.fitModel(n_iter=1500)  
 8     _lda.printTopic_Word(n_top_word=10)  
 9     _lda.printDoc_Topic()  
10     _lda.saveVocabulary(u'C:\\Users\Administrator\Desktop\\vocab.txt')  
11     _lda.saveTopic_Words(u'C:\\Users\Administrator\Desktop\\topic_word.txt')  
12     _lda.saveDoc_Topic(u'C:\\Users\Administrator\Desktop\\doc_topic.txt')  

 

因为语料全部为英文,因此这里的stop_words全部设置为英文符号,主题设置20个,迭代1500次。结果显示,文档148篇,词典1347词,总词数4174

Topic_words部分输出如下:

Topic: 0  to will and of he be trumps the what policy
Topic: 1 he would in said not no with mr this but
Topic: 2 for or can some whether have change health obamacare insurance
Topic: 3 the to that president as of us also first all
Topic: 4 trump to when with now were republican mr office presidential
Topic: 5 the his trump from uk who president to american house
Topic: 6 a to that was it by issue vote while marriage
Topic: 7 the to of an are they which by could from
Topic: 8 of the states one votes planned won two new clinton
Topic: 9 in us a use for obama law entry new interview
Topic: 10 and on immigration has that there website vetting action given

Doc_Topic部分输出如下:

Doc 0:((top topic:4) topic distribution:[ 0.02972973  0.0027027   0.0027027   0.16486486  0.32702703  0.19189189
  0.0027027   0.0027027   0.02972973  0.0027027   0.02972973  0.0027027
  0.0027027   0.0027027   0.02972973  0.0027027   0.02972973  0.0027027
  0.13783784  0.0027027 ])
Doc 1:((top topic:18) topic distribution:[ 0.21  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.11  0.01  0.01  0.01
  0.01  0.01  0.01  0.01  0.01  0.01  0.31  0.21])
Doc 2:((top topic:18) topic distribution:[ 0.02075472  0.00188679  0.03962264  0.00188679  0.00188679  0.00188679
  0.00188679  0.15283019  0.00188679  0.02075472  0.00188679  0.24716981
  0.00188679  0.07735849  0.00188679  0.00188679  0.00188679  0.00188679
  0.41698113  0.00188679])

 

当然,对于英文语料,需要排除大部分的虚词以及常用无意义词,例如it, this, there, that...在实际操作中,需要合理地设置参数。

换中文语料尝试,采用习大大就卡斯特罗逝世发表的吊唁文章和朴槿惠辞职的新闻。

Topic: 0  的 同志 和 人民 卡斯特罗 菲德尔 古巴 他 了 我
Topic: 1 在 朴槿惠 向 表示 总统 对 将 的 月 国民
Doc 0:((top topic:0) topic distribution:[ 0.91714123  0.08285877])
Doc 1:((top topic:1) topic distribution:[ 0.09200666  0.90799334])

还是存在一些虚词,例如“的”,“和”,“了”,“对”等词的干扰,但是大致来说,两则新闻的主题分布很明显,效果还不赖。

 

本文来自于:Python—LDA实现


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM