论文笔记-Joint Deep Modeling of Users and Items Using Reviews for Recommendation


基本思路:利用用户和商品的评论构建CNN预测评分。

 

网络结构:

user review网络与 item review网络结构一致,仅就前者进行说明

 

从user review text到 look-up layer:

首先需要pre-train一个word embedding的词表,对某个用户,将其对所有商品的评论拼接为一条sequence,对其中的每个词,去look-up table中找对应的vector,所以最后形成的是一个word embedding的matrix,作为输入,进入convolution layer。 paper强调review中词的顺序被matrix保留,所以要强于词袋模型。

 

然后经过常规的convolution layer和 max pooling,可以看到user和item在max pooling后分别是一个向量了,经过FC层后的向量 x与y拼接到一起成为z,然后通过一个FM model最小化loss function

 

 

paper中对实验结果的分析,表示对review数目少的user和item而言,MSE降低的更明显(baseline是MF模型),说明本模型能降低数据稀疏的影响。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM