https://www.zhihu.com/question/47033644
前段时间在看MIT的线性代数的公开课,这里以二维空间为例,简单说一下。
二维空间中椭圆最基本的形式是:
很显然椭圆的两轴为别是
轴及
轴,轴长分别是2a以及2b。
上面这个方程写成矩阵的形式是这样子的:![\left[
\begin{array}{c}
x \\
y
\end{array}
\right]^T
\left[
\begin{array}{cc}
1/a^2 & 0 \\
0 & 1/b^2
\end{array}
\right]
\left[
\begin{array}{c}
x \\
y
\end{array}
\right]
=x^TAx=1](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGVmdCU1QisrJTBBKyslNUNiZWdpbiU3QmFycmF5JTdEJTdCYyU3RCsrJTBBKysrKysrKysrK3grJTVDJTVDKyUwQSsrKysrKysrKyt5KyslMEErJTVDZW5kJTdCYXJyYXklN0QrKyUwQSslNUNyaWdodCU1RCU1RVQlMEErJTVDbGVmdCU1QisrJTBBJTVDYmVnaW4lN0JhcnJheSU3RCU3QmNjJTdEKyslMEErKysrKysrKysrMSUyRmElNUUyKyUyNiswKyU1QyU1QysrJTBBKysrKysrKysrKzArJTI2KzElMkZiJTVFMiUwQSsrJTVDZW5kJTdCYXJyYXklN0QrKyslMEErJTVDcmlnaHQlNUQlMEErJTVDbGVmdCU1QisrJTBBKyslNUNiZWdpbiU3QmFycmF5JTdEJTdCYyU3RCsrJTBBKysrKysrKysrK3grJTVDJTVDKyUwQSsrKysrKysrKyt5KyslMEErJTVDZW5kJTdCYXJyYXklN0QrKyUwQSslNUNyaWdodCU1RCUwQSUzRHglNUVUQXglM0Qx.png)
的特征值为:
,
;
的归一化特征向量为:![\mu_1= \left[
\begin{array}{c}
1 \\
0
\end{array}
\right]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtdV8xJTNEKyU1Q2xlZnQlNUIrKyUwQSsrJTVDYmVnaW4lN0JhcnJheSU3RCU3QmMlN0QrKyUwQSsrKysrKysrKysxKyU1QyU1QyslMEErKysrKysrKysrMCsrJTBBKyU1Q2VuZCU3QmFycmF5JTdEKyslMEErJTVDcmlnaHQlNUQ=.png)
。
椭圆的长短轴分别沿着矩阵
的两个特征向量的方向,而两个与之对应的特征值分别是半长轴和半短轴的长度的平方的倒数。
更一般一点的例子:
化成矩阵形式是:![\left[
\begin{array}{c}
x \\
y
\end{array}
\right]^T
\left[
\begin{array}{cc}
a & b \\
b & c
\end{array}
\right]
\left[
\begin{array}{c}
x \\
y
\end{array}
\right]
=x^TAx=1](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGVmdCU1QisrJTBBKyslNUNiZWdpbiU3QmFycmF5JTdEJTdCYyU3RCsrJTBBKysrKysrKysrK3grJTVDJTVDKyUwQSsrKysrKysrKyt5KyslMEErJTVDZW5kJTdCYXJyYXklN0QrKyUwQSslNUNyaWdodCU1RCU1RVQlMEErJTVDbGVmdCU1QisrJTBBJTVDYmVnaW4lN0JhcnJheSU3RCU3QmNjJTdEKyslMEErKysrKysrKysrYSslMjYrYislNUMlNUMrKyUwQSsrKysrKysrKytiKyUyNitjJTBBKyslNUNlbmQlN0JhcnJheSU3RCsrKyUwQSslNUNyaWdodCU1RCUwQSslNUNsZWZ0JTVCKyslMEErKyU1Q2JlZ2luJTdCYXJyYXklN0QlN0JjJTdEKyslMEErKysrKysrKysreCslNUMlNUMrJTBBKysrKysrKysrK3krKyUwQSslNUNlbmQlN0JhcnJheSU3RCsrJTBBKyU1Q3JpZ2h0JTVEJTBBJTNEeCU1RVRBeCUzRDE=.png)
(这里要求矩阵
是正定矩阵)
举个例子说明:
![\left[
\begin{array}{c}
x \\
y
\end{array}
\right]^T
\left[
\begin{array}{cc}
5 & 4 \\
4 & 5
\end{array}
\right]
\left[
\begin{array}{c}
x \\
y
\end{array}
\right]
=x^TAx=1](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0rJTVDbGVmdCU1QisrJTBBKyslNUNiZWdpbiU3QmFycmF5JTdEJTdCYyU3RCsrJTBBKysrKysrKysrK3grJTVDJTVDKyUwQSsrKysrKysrKyt5KyslMEErJTVDZW5kJTdCYXJyYXklN0QrKyUwQSslNUNyaWdodCU1RCU1RVQlMEErJTVDbGVmdCU1QisrJTBBJTVDYmVnaW4lN0JhcnJheSU3RCU3QmNjJTdEKyslMEErKysrKysrKysrNSslMjYrNCslNUMlNUMrKyUwQSsrKysrKysrKys0KyUyNis1JTBBKyslNUNlbmQlN0JhcnJheSU3RCsrKyUwQSslNUNyaWdodCU1RCUwQSslNUNsZWZ0JTVCKyslMEErKyU1Q2JlZ2luJTdCYXJyYXklN0QlN0JjJTdEKyslMEErKysrKysrKysreCslNUMlNUMrJTBBKysrKysrKysrK3krKyUwQSslNUNlbmQlN0JhcnJheSU3RCsrJTBBKyU1Q3JpZ2h0JTVEJTBBJTNEeCU1RVRBeCUzRDE=.png)
的特征值为:
,
;
的归一化特征向量为:![\mu_1= \left[
\begin{array}{c}
1/\sqrt{2} \\
-1/\sqrt{2}
\end{array}
\right]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtdV8xJTNEKyU1Q2xlZnQlNUIrKyUwQSsrJTVDYmVnaW4lN0JhcnJheSU3RCU3QmMlN0QrKyUwQSsrKysrKysrKysxJTJGJTVDc3FydCU3QjIlN0QrJTVDJTVDKyUwQSsrKysrKysrKystMSUyRiU1Q3NxcnQlN0IyJTdEKyslMEErJTVDZW5kJTdCYXJyYXklN0QrKyUwQSslNUNyaWdodCU1RA==.png)
。
于是可以将
正交分解:![A=Q \Lambda Q^{-1}=Q \Lambda Q^{T}=
\left[
\begin{array}{cc}
1/\sqrt{2} & 1/\sqrt{2} \\
-1/\sqrt{2} & 1/\sqrt{2}
\end{array}
\right]
\left[
\begin{array}{cc}
1 & 0 \\
0 & 9
\end{array}
\right]
\left[
\begin{array}{cc}
1/\sqrt{2} & -1/\sqrt{2} \\
1/\sqrt{2} & 1/\sqrt{2}
\end{array}
\right]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1BJTNEUSslNUNMYW1iZGErUSU1RSU3Qi0xJTdEJTNEUSslNUNMYW1iZGErUSU1RSU3QlQlN0QlM0QlMEErJTVDbGVmdCU1QisrJTBBJTVDYmVnaW4lN0JhcnJheSU3RCU3QmNjJTdEKyslMEErKysrKysrKysrMSUyRiU1Q3NxcnQlN0IyJTdEKyUyNisxJTJGJTVDc3FydCU3QjIlN0QrJTVDJTVDKyslMEErKysrKysrKysrLTElMkYlNUNzcXJ0JTdCMiU3RCslMjYrMSUyRiU1Q3NxcnQlN0IyJTdEJTBBKyslNUNlbmQlN0JhcnJheSU3RCsrKyUwQSslNUNyaWdodCU1RCUwQSslNUNsZWZ0JTVCKyslMEElNUNiZWdpbiU3QmFycmF5JTdEJTdCY2MlN0QrKyUwQSsrKysrKysrKysxKyUyNiswKyU1QyU1QysrJTBBKysrKysrKysrKzArJTI2KzklMEErKyU1Q2VuZCU3QmFycmF5JTdEKysrJTBBKyU1Q3JpZ2h0JTVEJTBBKyU1Q2xlZnQlNUIrKyUwQSU1Q2JlZ2luJTdCYXJyYXklN0QlN0JjYyU3RCsrJTBBKysrKysrKysrKzElMkYlNUNzcXJ0JTdCMiU3RCslMjYrLTElMkYlNUNzcXJ0JTdCMiU3RCslNUMlNUMrKyUwQSsrKysrKysrKysxJTJGJTVDc3FydCU3QjIlN0QrJTI2KzElMkYlNUNzcXJ0JTdCMiU3RCUwQSsrJTVDZW5kJTdCYXJyYXklN0QrKyslMEErJTVDcmlnaHQlNUQ=.png)
因此
于是可以看出,椭圆的轴向沿着
的特征向量,半轴长是
的特征值倒数的开方。
作者:Eathen
链接:https://www.zhihu.com/question/47033644/answer/112864757
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
