《Image Generation with PixelCNN Decoders》论文笔记


论文背景:Google Deepmind团队于2016发表在NIPS上的文章

motivation:提出新的image generation model based on pixelCNN[1]架构。可以为任意输入vector结合标签生成图片,在先验信息的前提下加入条件分布信息

模型关键:根据链式条件概率,逐行生成,逐像素点生成

相对于GAN的优势:

  • GAN只善于处理连续数据,pixelCNN对连续数据和非连续数据都能很好perform
  • 链式likelihood表达可以比GAN更好的提供生成目标的评价系统,虽然也不尽完美

 

相对于GAN的劣势:

1. 训练速度慢得吓死人,openAI基于CIFR dataset 收敛需要8块Titan上train 5天,直接打消本穷人的训练欲望
2. sample quality明显不如GAN。

1.Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. arXiv

preprint arXiv:1601.06759, 2016.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM