参考资料
GAN原理学习笔记
生成式对抗网络GAN汇总
GAN的理解与TensorFlow的实现
TensorFlow小试牛刀(2):GAN生成手写数字
参考代码之一
#coding=utf-8 #http://blog.csdn.net/u012223913/article/details/75051516?locationNum=1&fps=1 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os from tensorflow.examples.tutorials.mnist import input_data sess = tf.InteractiveSession() mb_size = 128 Z_dim = 100 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def weight_var(shape, name): return tf.get_variable(name=name, shape=shape, initializer=tf.contrib.layers.xavier_initializer()) def bias_var(shape, name): return tf.get_variable(name=name, shape=shape, initializer=tf.constant_initializer(0)) # discriminater net X = tf.placeholder(tf.float32, shape=[None, 784], name='X') # X [128 784] z1 = W * x + b # 矩阵乘法 128 * 784 * 784 * 128 = [128 128] D_W1 = weight_var([784, 128], 'D_W1') D_b1 = bias_var([128], 'D_b1') #z2 = W * z1 + b # 矩阵乘法 128 * 128 * 128 * 1 = [128 1] 输出判决结果,二分类 D_W2 = weight_var([128, 1], 'D_W2') D_b2 = bias_var([1], 'D_b2') theta_D = [D_W1, D_W2, D_b1, D_b2] # generator net Z = tf.placeholder(tf.float32, shape=[None, 100], name='Z') # z [128 784] z1 = W * x + b # 矩阵乘法 128 * 100 * 100 * 128 = [128 128] G_W1 = weight_var([100, 128], 'G_W1') G_b1 = bias_var([128], 'G_B1') #z2 = W * z1 + b # 矩阵乘法 128 * 128 * 128 * 784 = [128 784] 输出28*28的图像 G_W2 = weight_var([128, 784], 'G_W2') G_b2 = bias_var([784], 'G_B2') theta_G = [G_W1, G_W2, G_b1, G_b2] def generator(z): G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 G_prob = tf.nn.sigmoid(G_log_prob) return G_prob def discriminator(x): D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) D_logit = tf.matmul(D_h1, D_W2) + D_b2 D_prob = tf.nn.sigmoid(D_logit) return D_prob, D_logit G_sample = generator(Z) D_real, D_logit_real = discriminator(X) D_fake, D_logit_fake = discriminator(G_sample) #discriminator输出为1表示ground truth #discriminator输出为0表示非ground truth #对于生成网络希望两点: #(2)希望D_real尽可能大,这样保证正确识别真正的样本 #(1)希望D_fake尽可能小,这样可以剔除假的生成样本 D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) #对于判别网络, 希望D_fake尽可能大,这样可以迷惑生成网络, G_loss = -tf.reduce_mean(tf.log(D_fake)) D_optimizer = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) G_optimizer = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) init = tf.initialize_all_variables() saver = tf.train.Saver() # 启动默认图 sess = tf.Session() # 初始化 sess.run(init) def sample_Z(m, n): '''Uniform prior for G(Z)''' return np.random.uniform(-1., 1., size=[m, n]) def plot(samples): fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): # [i,samples[i]] imax=16 ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(28, 28), cmap='Greys_r') return fig if not os.path.exists('out/'): os.makedirs('out/') i = 0 for it in range(1000000): if it % 1000 == 0: samples = sess.run(G_sample, feed_dict={ Z: sample_Z(16, Z_dim)}) # 16*784 fig = plot(samples) plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') i += 1 plt.close(fig) X_mb, _ = mnist.train.next_batch(mb_size)#ground truth _, D_loss_curr = sess.run([D_optimizer, D_loss], feed_dict={ X: X_mb, Z: sample_Z(mb_size, Z_dim)}) _, G_loss_curr = sess.run([G_optimizer, G_loss], feed_dict={ Z: sample_Z(mb_size, Z_dim)}) if it % 1000 == 0: print('Iter: {}'.format(it)) print('D loss: {:.4}'.format(D_loss_curr)) print('G_loss: {:.4}'.format(G_loss_curr)) print()
参考代码之二
#http://blog.csdn.net/sparkexpert/article/details/70147409 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np #from skimage.io import imsave import scipy import os import shutil img_height = 28 img_width = 28 img_size = img_height * img_width to_train = True to_restore = False output_path = "output" # 总迭代次数500 max_epoch = 500 h1_size = 150 h2_size = 300 z_size = 100 batch_size = 256 # generate (model 1) def build_generator(z_prior): w1 = tf.Variable(tf.truncated_normal([z_size, h1_size], stddev=0.1), name="g_w1", dtype=tf.float32) b1 = tf.Variable(tf.zeros([h1_size]), name="g_b1", dtype=tf.float32) h1 = tf.nn.relu(tf.matmul(z_prior, w1) + b1) w2 = tf.Variable(tf.truncated_normal([h1_size, h2_size], stddev=0.1), name="g_w2", dtype=tf.float32) b2 = tf.Variable(tf.zeros([h2_size]), name="g_b2", dtype=tf.float32) h2 = tf.nn.relu(tf.matmul(h1, w2) + b2) w3 = tf.Variable(tf.truncated_normal([h2_size, img_size], stddev=0.1), name="g_w3", dtype=tf.float32) b3 = tf.Variable(tf.zeros([img_size]), name="g_b3", dtype=tf.float32) h3 = tf.matmul(h2, w3) + b3 x_generate = tf.nn.tanh(h3) g_params = [w1, b1, w2, b2, w3, b3] return x_generate, g_params # discriminator (model 2) def build_discriminator(x_data, x_generated, keep_prob): # tf.concat x_in = tf.concat([x_data, x_generated], 0) w1 = tf.Variable(tf.truncated_normal([img_size, h2_size], stddev=0.1), name="d_w1", dtype=tf.float32) b1 = tf.Variable(tf.zeros([h2_size]), name="d_b1", dtype=tf.float32) h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x_in, w1) + b1), keep_prob) w2 = tf.Variable(tf.truncated_normal([h2_size, h1_size], stddev=0.1), name="d_w2", dtype=tf.float32) b2 = tf.Variable(tf.zeros([h1_size]), name="d_b2", dtype=tf.float32) h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(h1, w2) + b2), keep_prob) w3 = tf.Variable(tf.truncated_normal([h1_size, 1], stddev=0.1), name="d_w3", dtype=tf.float32) b3 = tf.Variable(tf.zeros([1]), name="d_b3", dtype=tf.float32) h3 = tf.matmul(h2, w3) + b3 y_data = tf.nn.sigmoid(tf.slice(h3, [0, 0], [batch_size, -1], name=None)) y_generated = tf.nn.sigmoid(tf.slice(h3, [batch_size, 0], [-1, -1], name=None)) d_params = [w1, b1, w2, b2, w3, b3] return y_data, y_generated, d_params # def show_result(batch_res, fname, grid_size=(8, 8), grid_pad=5): batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5 img_h, img_w = batch_res.shape[1], batch_res.shape[2] grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1) grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1) img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8) for i, res in enumerate(batch_res): if i >= grid_size[0] * grid_size[1]: break img = (res) * 255 img = img.astype(np.uint8) row = (i // grid_size[0]) * (img_h + grid_pad) col = (i % grid_size[1]) * (img_w + grid_pad) img_grid[row:row + img_h, col:col + img_w] = img #imsave(fname, img_grid) #img.save('output/num.jpg') scipy.misc.imsave(fname, img_grid) def train(): # load data(mnist手写数据集) mnist = input_data.read_data_sets('mnist_data', one_hot=True) x_data = tf.placeholder(tf.float32, [batch_size, img_size], name="x_data") z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior") keep_prob = tf.placeholder(tf.float32, name="keep_prob") global_step = tf.Variable(0, name="global_step", trainable=False) # 创建生成模型 x_generated, g_params = build_generator(z_prior) # 创建判别模型 y_data, y_generated, d_params = build_discriminator(x_data, x_generated, keep_prob) # 损失函数的设置 d_loss = - (tf.log(y_data) + tf.log(1 - y_generated)) g_loss = - tf.log(y_generated) optimizer = tf.train.AdamOptimizer(0.0001) # 两个模型的优化函数 d_trainer = optimizer.minimize(d_loss, var_list=d_params) g_trainer = optimizer.minimize(g_loss, var_list=g_params) init = tf.initialize_all_variables() saver = tf.train.Saver() # 启动默认图 sess = tf.Session() # 初始化 sess.run(init) if to_restore: chkpt_fname = tf.train.latest_checkpoint(output_path) saver.restore(sess, chkpt_fname) else: if os.path.exists(output_path): shutil.rmtree(output_path) os.mkdir(output_path) z_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32) steps = 60000 / batch_size for i in range(sess.run(global_step), max_epoch): for j in np.arange(steps): # for j in range(steps): print("epoch:%s, iter:%s" % (i, j)) # 每一步迭代,我们都会加载256个训练样本,然后执行一次train_step x_value, _ = mnist.train.next_batch(batch_size) x_value = 2 * x_value.astype(np.float32) - 1 z_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32) # 执行生成 sess.run(d_trainer, feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)}) # 执行判别 if j % 1 == 0: sess.run(g_trainer, feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)}) x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_sample_val}) show_result(x_gen_val, "output/sample{0}.jpg".format(i)) z_random_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32) x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_random_sample_val}) show_result(x_gen_val, "output/random_sample{0}.jpg".format(i)) sess.run(tf.assign(global_step, i + 1)) saver.save(sess, os.path.join(output_path, "model"), global_step=global_step) def test(): z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior") x_generated, _ = build_generator(z_prior) chkpt_fname = tf.train.latest_checkpoint(output_path) init = tf.initialize_all_variables() sess = tf.Session() saver = tf.train.Saver() sess.run(init) saver.restore(sess, chkpt_fname) z_test_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32) x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_test_value}) show_result(x_gen_val, "output/test_result.jpg") if __name__ == '__main__': if to_train: train() else: test()