信号处理的窗函数


信号在做FFT分析的时候需要进行截断。

当发生周期性截断的时候,对截断的这一帧信号做FFT分析,得到它的频谱如下图所示。从图中可以看出,得到的频率成分为原始信号的真实频率,并且幅值与原始信号的幅值相等(100%幅值)。

 

而进行非周期性截断的时候,则会发生能量泄露。对比周期截断的频谱,可以看出,此时频谱在整个频带上发生“拖尾”现象。峰值处的频率与原始信号的频率相近,但并不相等。另一方面,峰值处的幅值已不再等于原始信号的幅值,为原始信号幅值的64%(矩形窗的影响)。而幅值的其他部分(36%幅值)则分布在整个频带的其他谱线上。

 

窗函数实质上是一个加权函数。通过加窗函数与原始函数相乘,改善能量泄露的状况。

 

常见窗函数域形状和频域特征如下图所示,可以看出,窗函数不同,时域和频域都是不同的。

 

窗函数的一些参数说明:

 

各种窗函数频谱特征的主要差别在于:主瓣宽度(也称为有效噪声带宽,ENBW)、幅值失真度、最高旁瓣高度和旁瓣衰减速率等参数。加窗的主要想法是用比较 光滑的窗函数代替截取信号样本的矩形窗函数,也就是对截断后的时域信号进行特定的不等计权,使被截断后的时域波形两端突变变得平滑些,以此压低谱窗的旁瓣。

加窗函数时,应使窗函数频谱的主瓣宽度应尽量窄,以获得高的频率分辨能力;旁瓣衰减应尽量大,以减少频谱拖尾,但通常都不能同时满足这两个要求。各种窗的差别主要在于集中于主瓣的能量和分散在所有旁瓣的能量之比。

窗的选择取决于分析的目标和被分析信号的类型。一般说,有效噪声频带越宽,频率分辨能力越差,越难于分清有相同幅值的邻近频率。选择性(即分辨出强分量频率 邻近的弱分量的能力)的提高与旁瓣的衰减率有关。通常,有效噪声带宽窄的窗,其旁瓣的衰减率较低,因此窗的选择是在二者中取折衷。

 

NOTES

汉宁窗表达式:

For interval {\displaystyle n\in [0,N-1],}

{\displaystyle w(n)=0.5\;\left[1-\cos \left({\frac {2\pi n}{N-1}}\right)\right]=\sin ^{2}\left({\frac {\pi n}{N-1}}\right).}

 

参考

什么是窗函数:https://zhuanlan.zhihu.com/p/24318554

什么是泄露:https://mp.weixin.qq.com/s?__biz=MzI5NTM0MTQwNA==&mid=2247484164&idx=1&sn=fdaf2164306a9ca4166c2aa8713cacc5&scene=21#wechat_redirect

WIKI window function:https://en.wikipedia.org/wiki/Window_function


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM