强分类器和弱分类器


一个分类器的分类准确率在60%-80%,即:比随机预测略好,但准确率却不太高,我们可以称之为“弱分类器”,比如CART(classification and regression tree)。

反之,如果分类精度90%以上,则是强分类器

弱分类器在adaptive boosting(Adaboost)的作用仅仅是提供了一个训练方向(就是看弱训练在那个特征(或者叫方向)上面的误差最大),然后在这个方向上面增强训练权值,即所谓强训练。最后组合起来的就是最终的结果。可以看到弱训练只是要提供一个好的训练方向就行了,而强训练才是最终模型优良的关键,强分类器的设计在于如何组合


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM