极大似然估计与方差


相关概念:极大似然估计,score function,Fisher information

Let f(X; θ) be the probability density function (or probability mass function) for X conditional on the value of θ. This is also the likelihood function for θ. It describes the probability that we observe a given sample X, given a known value of θ.

1、If f is sharply peaked with respect to changes in θ, it is easy to indicate the “correct” value of θ from the data, or equivalently, that the data X provides a lot of information about the parameter θ

2、If the likelihood f is flat and spread-out, then it would take many, many samples like X to estimate the actual “true” value of θ that would be obtained using the entire population being sampled.

two if : This suggests studying some kind of variance with respect to θ.

score function: 对数似然函数的一阶导

以上是证明一阶导的期望为0

fisher information:score function的二阶矩

Note that0 \leq \mathcal{I}(\theta) < \infty. A random variable carrying high Fisher information implies that the absolute value of the score is often high. The Fisher information is not a function of a particular observation, as the random variable X has been averaged out.

如果对数似然函数的二阶可导,则Fisher信息量可写成:

因为:

{

 对数似然的一阶导

  一阶导的方差就是信息量}

同时由于:

Thus, the Fisher information may be seen as the curvature (曲率)of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high Fisher information indicates that the maximum is sharp.

 信息量可加:

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM