r-cnn学习(四):train_faster_rcnn_alt_opt.py源码学习


论文看的云里雾里,希望通过阅读其代码来进一步了解。

参考:http://blog.csdn.net/sloanqin/article/details/51525692

 首先是./tools/train_faster_rcnn_alt_opt.py通过其main函数了解整个训练流程。

if __name__ == '__main__': #建议读者调试这个函数,进去看看每个变量是怎么回事 
    args = parse_args() #解析系统传入的argv参数,解析完放到args中返回 
  
    print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) #如果输入了这个参数,就调用该函数,应该是做某些配置操作 
    if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.GPU_ID = args.gpu_id # cfg是一个词典(edict)数据结构,从faster-rcnn.config引入的 
  
    # -------------------------------------------------------------------------- 
    # Pycaffe doesn't reliably free GPU memory when instantiated nets are 
    # discarded (e.g. "del net" in Python code). To work around this issue, each 
    # training stage is executed in a separate process using 
    # multiprocessing.Process. #这里说的要使用多进程,因为在pycaffe中当某个网络被discard后,不能可靠保证释放内存资源;进程关闭后资源自然会释放 
    # -------------------------------------------------------------------------- 
  
    # queue for communicated results between processes 
    mp_queue = mp.Queue() #mp指的是multiprocessing库,所以这里返回了一个用于多进程通信的队列对象 
    # solves, iters, etc. for each training stage 
    solvers, max_iters, rpn_test_prototxt = get_solvers(args.net_name) #这里返回了solvers的路径,maxiters的值,rpn_test_prototxt的路径 
  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 1 RPN, init from ImageNet model'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    # 这一步是用imageNet的模型初始化,然后训练rpn网络(整个训练过程可以参考作者的论文) 
    cfg.TRAIN.SNAPSHOT_INFIX = 'stage1' mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, init_model=args.pretrained_model, solver=solvers[0], max_iters=max_iters[0], cfg=cfg) # 这里把该阶段需要的参数都放到这里来了,即函数train_rpn的输入参数 
    p = mp.Process(target=train_rpn, kwargs=mp_kwargs) # 显然,这里准备启动一个新进程,调用函数train_rpn,传入参数kwargs,所以我们进入train_rpn函数看看是如何工作的 
 p.start() rpn_stage1_out = mp_queue.get() p.join() print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 1 RPN, generate proposals'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    # 这一步是利用上一步训练好的rpn网络,产生proposals供后面使用 
    mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, rpn_model_path=str(rpn_stage1_out['model_path']), cfg=cfg, rpn_test_prototxt=rpn_test_prototxt) p = mp.Process(target=rpn_generate, kwargs=mp_kwargs) p.start() rpn_stage1_out['proposal_path'] = mp_queue.get()['proposal_path'] p.join() print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 1 Fast R-CNN using RPN proposals, init from ImageNet model'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    #这一步是再次用imageNet的模型初始化前5层卷积层,然后用上一步得到的proposals训练检测网络 
    cfg.TRAIN.SNAPSHOT_INFIX = 'stage1' mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, init_model=args.pretrained_model, solver=solvers[1], max_iters=max_iters[1], cfg=cfg, rpn_file=rpn_stage1_out['proposal_path']) p = mp.Process(target=train_fast_rcnn, kwargs=mp_kwargs) p.start() fast_rcnn_stage1_out = mp_queue.get() p.join() print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 2 RPN, init from stage 1 Fast R-CNN model'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    #这一步固定上一步训练好的前五层卷积层,再次训练RPN,这样就得到最终RPN网络的参数了 
    cfg.TRAIN.SNAPSHOT_INFIX = 'stage2' mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, init_model=str(fast_rcnn_stage1_out['model_path']), solver=solvers[2], max_iters=max_iters[2], cfg=cfg) p = mp.Process(target=train_rpn, kwargs=mp_kwargs) p.start() rpn_stage2_out = mp_queue.get()#保留训练的权重 p.join() print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 2 RPN, generate proposals'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    #利用最终确定的RPN网络产生proposals 
    mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, rpn_model_path=str(rpn_stage2_out['model_path']), cfg=cfg, rpn_test_prototxt=rpn_test_prototxt) p = mp.Process(target=rpn_generate, kwargs=mp_kwargs) p.start() rpn_stage2_out['proposal_path'] = mp_queue.get()['proposal_path'] p.join() print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    print 'Stage 2 Fast R-CNN, init from stage 2 RPN R-CNN model'  
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'  
    #利用上一步产生的proposals,训练出最终的检测网络 
    cfg.TRAIN.SNAPSHOT_INFIX = 'stage2' mp_kwargs = dict( queue=mp_queue, imdb_name=args.imdb_name, init_model=str(rpn_stage2_out['model_path']), solver=solvers[3], max_iters=max_iters[3], cfg=cfg, rpn_file=rpn_stage2_out['proposal_path']) p = mp.Process(target=train_fast_rcnn, kwargs=mp_kwargs) p.start() fast_rcnn_stage2_out = mp_queue.get() p.join() # Create final model (just a copy of the last stage) 
    final_path = os.path.join( os.path.dirname(fast_rcnn_stage2_out['model_path']), args.net_name + '_faster_rcnn_final.caffemodel') print 'cp {} -> {}'.format( fast_rcnn_stage2_out['model_path'], final_path) shutil.copy(fast_rcnn_stage2_out['model_path'], final_path) print 'Final model: {}'.format(final_path)  

通过上面的代码可以看出,整个迭代过程分为四步(参考论文)。其中后面两步固定共享卷积

层,只对RPN和fc层进行微调。

 

接着看看每一步是怎样的。

首先是train_rpn。从代码看出,这个函数的主要任务是,配置参数,准备数据集,

传入第一阶段的solver,调用train_net训练模型并将结果返回。

def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None, max_iters=None, cfg=None): """Train a Region Proposal Network in a separate training process. """  
    #首先进来后继续配置了一些cfg这个对象的一些参数 
    # Not using any proposals, just ground-truth boxes 
    cfg.TRAIN.HAS_RPN = True cfg.TRAIN.BBOX_REG = False  # applies only to Fast R-CNN bbox regression 
    cfg.TRAIN.PROPOSAL_METHOD = 'gt' cfg.TRAIN.IMS_PER_BATCH = 1  
    print 'Init model: {}'.format(init_model) #格式化输出字符串 
    print('Using config:') pprint.pprint(cfg) import caffe _init_caffe(cfg) #这里是关键,准备数据集,我们在debug的时候可以发现,imdb是一个类,而roidb是该类的一个成员 
    roidb, imdb = get_roidb(imdb_name)#我们进入这个数据准备的函数看看 
    print 'roidb len: {}'.format(len(roidb)) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) #这个solver传入的是./models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt 
    model_paths = train_net(solver, roidb, output_dir, pretrained_model=init_model, max_iters=max_iters) #进入train_net函数,看训练如何实现的 
    # Cleanup all but the final model 
    for i in model_paths[:-1]: #把训练过程中保存的中间结果的模型删掉,只返回最终模型的结果 
 os.remove(i) rpn_model_path = model_paths[-1] # Send final model path through the multiprocessing queue 
    queue.put({'model_path': rpn_model_path}) #通过队列将该进程运行的模型结果的路径返回  

 

顺着train_rpn,查看train_net函数,该函数位于:./lib/fast_rcnn/train.py文件中

调用该文件中定义的类SolverWrapper的构造函数,返回该类的一个对象sw,然后调用了sw的train_model方法进行训练,

传入参数,搭建caffe的网络结构,用预训练模型完成初始化,整个过程在构造函数中完成。

 

"""Train a Fast R-CNN network."""  
  
import caffe from fast_rcnn.config import cfg import roi_data_layer.roidb as rdl_roidb from utils.timer import Timer import numpy as np import os from caffe.proto import caffe_pb2 import google.protobuf as pb2 class SolverWrapper(object): """A simple wrapper around Caffe's solver. This wrapper gives us control over he snapshotting process, which we use to unnormalize the learned bounding-box regression weights. """  
  
    #这就是SolverWrapper的构造函数 
    def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no 
            # fixed statistics to compute a priori 
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done'  
  
        # 这句话调用了caffe的SGDSolver,这个是caffe在C++中实现的一个类,用来进行随机梯度下降优化,该类根据solver_prototxt中定义的网络和求解参数,完成网络 
        # 初始化,然后返回类SGDSolver的一个实例,关于该类的设计可以参考caffe的网站:http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SGDSolver.html 
        # 然后作者把该对象作为SolverWrapper的一个成员,命名为solver 
        self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model '  
                   'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model)#这句话完成对网络的初始化 
 self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param)#这句话应该是设置了self.solver_param这个成员的参数 
 self.solver.net.layers[0].set_roidb(roidb)#这句话传入训练的数据:roidb 
  
    def snapshot(self): """Take a snapshot of the network after unnormalizing the learned bounding-box regression weights. This enables easy use at test-time. """ net = self.solver.net scale_bbox_params = (cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS and net.params.has_key('bbox_pred')) if scale_bbox_params: # save original values 
            orig_0 = net.params['bbox_pred'][0].data.copy() orig_1 = net.params['bbox_pred'][1].data.copy() # scale and shift with bbox reg unnormalization; then save snapshot 
            net.params['bbox_pred'][0].data[...] = \ (net.params['bbox_pred'][0].data * self.bbox_stds[:, np.newaxis]) net.params['bbox_pred'][1].data[...] = \ (net.params['bbox_pred'][1].data * self.bbox_stds + self.bbox_means) infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX if cfg.TRAIN.SNAPSHOT_INFIX != '' else '') filename = (self.solver_param.snapshot_prefix + infix +  
                    '_iter_{:d}'.format(self.solver.iter) + '.caffemodel') filename = os.path.join(self.output_dir, filename) net.save(str(filename)) print 'Wrote snapshot to: {:s}'.format(filename) if scale_bbox_params: # restore net to original state 
            net.params['bbox_pred'][0].data[...] = orig_0 net.params['bbox_pred'][1].data[...] = orig_1 return filename def train_model(self, max_iters): """Network training loop.""" last_snapshot_iter = -1 timer = Timer() model_paths = [] while self.solver.iter < max_iters: # Make one SGD update 
            timer.tic()#作者测量一次迭代花的时间 
            self.solver.step(1)# 做一次梯度下降优化 
 timer.toc() if self.solver.iter % (10 * self.solver_param.display) == 0: print 'speed: {:.3f}s / iter'.format(timer.average_time) if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = self.solver.iter model_paths.append(self.snapshot()) if last_snapshot_iter != self.solver.iter: model_paths.append(self.snapshot()) return model_paths def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training."""  
    if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done'  
  
    print 'Preparing training data...' rdl_roidb.prepare_roidb(imdb) print 'done'  
  
    return imdb.roidb def filter_roidb(roidb): """Remove roidb entries that have no usable RoIs."""  
    #判断是否是有效roidb
    def is_valid(entry): # Valid images have: 
        # (1) At least one foreground RoI OR 
        # (2) At least one background RoI 
        overlaps = entry['max_overlaps'] # find boxes with sufficient overlap 
        fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]#大于某个阈值为前景 # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) 
        bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & #在某两个阈值之间为背景 (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # image is only valid if such boxes exist 
        valid = len(fg_inds) > 0 or len(bg_inds) > 0#要么为前景,要么为背景,则为有效roidb return valid num = len(roidb) filtered_roidb = [entry for entry in roidb if is_valid(entry)] num_after = len(filtered_roidb) print 'Filtered {} roidb entries: {} -> {}'.format(num - num_after, num, num_after) return filtered_roidb # 该函数先是调用了该文件中定义的类SolverWrapper的构造函数,返回了该类的一个对象sw,然后调用了sw的train_model方法进行训练  # 传入参数,搭建caffe的网络结构,用预训练模型完成初始化,这些过程就是在该构造函数中实现的,进入这个构造函数看看 
def train_net(solver_prototxt, roidb, output_dir, pretrained_model=None, max_iters=40000): """Train a Fast R-CNN network.""" roidb = filter_roidb(roidb)#删除一些不满足要求的输入图片 
    sw = SolverWrapper(solver_prototxt, roidb, output_dir, pretrained_model=pretrained_model)#调用构造函数 
  
    print 'Solving...' model_paths = sw.train_model(max_iters)#开始训练模型 
    print 'done solving'  
    return model_paths  

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM