二次贝塞尔曲线公式


网络摘抄:记录学习

用下列一组数据点P0(0,1) P1(1,1) P2(1,0) 作为特征多边形的顶点,构造一条贝齐尔曲线,写出它的方程并作图

n个数据点构成(n-1)次贝塞尔曲线,
三个数据点构成二次贝塞尔曲线,二次贝塞尔曲线参数方程
(1 - t)^2 P0 + 2 t (1 - t) P1 + t^2 P2;
曲线起点P0,终点P2,但一般不过P1点.

代入坐标后得到:
参数方程:
x = (1 - t)^2 * 0 + 2 t (1 - t) * 1 + t^2 * 1 = 2 t (1 - t) + t^2,
y= (1 - t)^2 * 1 + 2 t (1 - t) * 1 + t^2 * 0 = (1 - t)^2 + 2 t (1 - t) ,

消去参数 t 得到:
y = -1 + 2 Sqrt[1 - x] + x.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM