利用HOG特征训练分类器说明文档-By miracled
整体框架: 样本制作+训练+检测 - (vs2008 + opencv2.3.1 + libsvm(可换用svmlight需改动部分源代码))
1. 样本制作:Make_Sample类
1.1功能大致如下(如需要详细的介绍,请直接参看源码)
Make_Sample() : 加载抠选参数可以采用这种方式,构造实例。
Make_Sample(Size winSize,Point tl = Point(),double ratios = 1.0,int numPerPic = 1);
winsize:指定抠选区域的大小
tl:指定抠选窗口的左上顶点,如果为(-1,-1)则随机在输入图像有效区域内随机选取。
ratios:指定输入图像的缩放比例,如果 <0则随机有效的比率。最大比率定义在make_sample.h中的MAXRATIOS中,可以自行修改。
numPerPic:指定每张输入图片中输出样本的数量,为随机抠选选项。
int Make(string root,string type,string savePath,void (*Proccess)(Mat& ) = 0);
root:输入图片的路径。
type:输入图片的格式。
savePath:抠选样本保存的路径。
void Process(Mat& image):图像的预处理函数,这个函数可以自行编写你的预处理过程。
int Make(string parmFile, string savePath,void (*Proccess)(Mat& ) = 0);
parmFile:抠选参数,形如
G:/database/test/imagexx.jpg 0 0 128 64 1
G:/database/test/366.jpg 0 0 128 64 1
G:/database/test/1568.jpg 0 0 128 64 1
G:/database/test/1939.jpg 0 0 128 64 1
path (x,y) winSize ratios // 路径 左上顶点 窗口大小 缩放比例
savePath:样本保存路径。
void Process(Mat& image):自定义预处理函数。
2. 训练
2.1 HOG特征提取(使用前请参看后面的5个注意事项)
bool initHogs(int num);
功能:初始化训练参数
num:提取样本的个数
void DetectPacket(Mat& img,Mat& grad_ang);
功能:计算输入图像img的角度和梯度,保存在grad_ang中
void calculateHogs(Mat& grad_ang,Point tl);
功能:计算一张大图中以tl为左上顶点检测窗口的HOG特征(为检测和寻找困难样本而设置)
grad_ang:梯度和角度
tl:检测窗口的左上顶点
void calculateHogs(Mat& grad_ang,int ipic);
功能:计算样本大小,第ipic个样本的HOG特征(为训练而设置)
grad_ang:梯度和角度
ipic:样本的编号。
void saveHog(char *hpath,int label,bool iscls = false) const;
功能:保存训练得到的hog特征
hapth:保存的全路径
label:保存的标签
iscls:是否清除上次保存的结果,默认不清除,使用append写入。
Mat getHogs() const { return vfeature; }
功能:获取训练得到的hog特征
float *getHogs(int ipic) const
功能:获取索引为ipic的样本hog特征
int FeatureLength() const { return parm.len; }
功能:获取特征的维数
int Height() const { return parm.height; }
功能:获取检测窗口的高度
int Width() const { return parm.width; }
功能:获取检测窗口的宽度
2.2使用hog特征需要注意的几点:
1、只定义了9方向
2、只定义L2归一化
3、需要使用请解开//#define _GAMMA_COMPRESS_的注释
4、高斯加权模板采用的16x16的如果block大小不是(16,16)则需要改动,请参看并修改static double* getGaussMask()函数
5、提取前需要加载配置文件Hogcfg.ini
width: 128
height: 64
block: 2
cell: 8
normt: 0 //这个参数预留,需要自己添加block归一化方法
3. 训练分类器
3.1获取训练数据
void getTrainData(char *root, char *type, int label, char *matlab_data)
功能:获取hog训练数据。
root:当前训练样本位置
type:训练样本格式
label:训练样本标签
matlab_data:训练样本保存名称
注意:样本必须同检测窗口大小,并且具有相同的标签,例如
getTrainData("G:/database/car_detect/pos4/",".jpg",1,"train.txt");
getTrainData("G:/database/car_detect/neg4/",".jpg",-1,"train.txt"); 保存名称需要相同,不然需要自己黏贴 到一个文件中参与训练。
3.2 训练
step1:训练一轮
训练方法主要有两种
第一种:
需要下载libsvm,使用其中的svm-train.exe文件
已经打包到一起了,在根目录下找到training_bat.bat,将其中的train.txt修改成你的训练数据名字,双击运行training_bat.bat就可以直接训练一轮得到一个libsvm的model,想自己设定参数请参看svm-train-usage.txt,如何使用svm-train.exe文件。
第二种:
使用matlab训练,不过需要修改hog特征提取中的
void saveHog(char *hpath,int label,bool iscls = false) const方法。然后将训练数据加载到matlab里训练就可以了。
注:这里得到的libsvm-model都比较大,如果使用的是线性的model的话,使用void changeModel(char *modelname,char *newmodelname,int fealen)方法转化一下就可以得到一个比较小的model,
modelname:libsvm的model,
newmodelname:自定义保存model的名字,
fealen:特征的维数,使用第二种方式训练的在matlab中转化可以参看源码(很简单的)。
step2:搜索困难样本
void findHardSample(char *modelname,char *hardroot,char *type,char *matlab_hard);
功能:利用训练好的线性模型搜索困难样本集,将困难样本数据保存在matlab_hard中
modelname:一个已训练好的线性mode
hardroot:困难样本集路径
type:样本扩展名
matlab_hard:保存困难样本的文件名
step2完成以后,挑选需要再次训练的困难样本与第一轮训练的数据合并,重复step1可以得到最终的分类器。
3. 检测
int detectCar(char *modelname,char *imfile);
功能:检测一张图片中是否含有目标。
modelname:分类器的路径
imfile:图片的路径
注意:
1、显示结果请打开//#define _SHOW_DETECT_RESULT_前的注释
2、关于多框的问题请调节,一下方法,具体如何调节请参看源码或网络
//PostProcess(carRect,1);
PostProcess(carRect,2);
//RemoveCoveredRectangles(carRect);
使用注意事项:code供学习使用,本人测试能用于检测,但不保证没有任何bug。
以上文档下载包已包含
下载地址:http://pan.baidu.com/share/link?shareid=137019&uk=3104776594