在scikit-learn中,提供了3中朴素貝葉斯分類算法:GaussianNB(高斯朴素貝葉斯)、MultinomialNB(多項式朴素貝葉斯)、BernoulliNB(伯努利朴素貝葉斯) 簡單介紹: 高斯朴素貝葉斯:適用於連續型數值,比如身高在160cm以下為一類,160-170cm ...
朴素貝葉斯分類器是一種與線性模型非常相類似的一種分類器。 它的訓練速度比線性模型更快,但是泛化能力要強。 主要思想:通過獨立查看每個特征來學習參數,並從每個特征中收集簡單的類別統計數據 scikit learn實現了三種朴素貝葉斯分類器: GaussianNB分類器 高斯 BernoulliNB分類器 伯努利 MultinomNB分類器 多項式 BernoulliNB分類器 伯努利 該分類器輸入數 ...
2022-04-20 18:29 0 708 推薦指數:
在scikit-learn中,提供了3中朴素貝葉斯分類算法:GaussianNB(高斯朴素貝葉斯)、MultinomialNB(多項式朴素貝葉斯)、BernoulliNB(伯努利朴素貝葉斯) 簡單介紹: 高斯朴素貝葉斯:適用於連續型數值,比如身高在160cm以下為一類,160-170cm ...
什么是朴素貝葉斯分類器? 首先看朴素兩個字,啥意思呢??它是英文單詞 naive 翻譯過來的,意思就是簡單的,朴素的。(它哪里簡單呢,后面會看到的:它假設一個事件的各個屬性之間是相互獨立的,這樣簡化了計算過程;這個假設在現實中不太可能成立,但是呢,研究表明對很多分類結果的准確性影響 ...
1. 貝葉斯定理 如果有兩個事件,事件 A 和事件 B 。已知事件 A 發生的概率為 ...
貝葉斯定理 貝葉斯定理是通過對觀測值概率分布的主觀判斷(即先驗概率)進行修正的定理,在概率論中具有重要地位。 先驗概率分布(邊緣概率)是指基於主觀判斷而非樣本分布的概率分布,后驗概率(條件概率)是 ...
貝葉斯定理 貝葉斯定理是通過對觀測值概率分布的主觀判斷(即先驗概率)進行修正的定理,在概率論中具有重要地位。 先驗概率分布(邊緣概率)是指基於主觀判斷而非樣本分布的概率分布,后驗概率(條件概率)是 ...
P(y|X)=P(y)*P(X|y)/P(X) 樣本中的屬性相互獨立; 原問題的等價問題為: 數據處理為防止P(y)*P(X|y)的值下溢,對原問題取對數,即: ...
簡單實現來自b站大神的視頻講解:https://www.bilibili.com/video/BV1qs411a7mT 詳情可以看視頻鏈接,講的非常好。 代碼和自己做的PPT百度雲鏈 ...
原型 class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None) 參數 ...