朴素貝葉斯分類器(MNIST數據集)


P(y|X)=P(y)*P(X|y)/P(X)

樣本中的屬性相互獨立;

 

原問題的等價問題為:

 

數據處理
為防止P(y)*P(X|y)的值下溢,對原問題取對數,即:

 

 

 

注意:若某屬性值在訓練集中沒有與某個類同時出現過,則直接P(y)或P(X|y)可能為0,這樣計算出P(y)*P(X|y)的值為0,沒有可比性,且不便於求對數,因此需要對概率值進行“平滑”處理,常用拉普拉斯修正。

先驗概率修正:令Dy表示訓練集D中第y類樣本組合的集合,N表示訓練集D中可能的類別數

 

即每個類別的樣本個數都加 1。

類條件概率:另Dy,xi表示Dc中在第 i 個屬性上取值為xi的樣本組成的集合,Ni表示第 i 個屬性可能的取值數

 

即該類別中第 i 個屬性都增加一個樣本。

--------------------------------------------------------------

數據預處理

 

訓練模型

測試樣本

函數調用

 

 

 

 

參考

python朴素貝葉斯分類MNIST數據集

import struct
from numpy import *
import numpy as np
import time
def read_image(file_name):
    #先用二進制方式把文件都讀進來
    file_handle=open(file_name,"rb")  #以二進制打開文檔
    file_content=file_handle.read()   #讀取到緩沖區中
    offset=0
    head = struct.unpack_from('>IIII', file_content, offset)  # 取前4個整數,返回一個元組
    offset += struct.calcsize('>IIII')
    imgNum = head[1]  #圖片數
    rows = head[2]   #寬度
    cols = head[3]  #高度

    images=np.empty((imgNum , 784))#empty,是它所常見的數組內的所有元素均為空,沒有實際意義,它是創建數組最快的方法
    image_size=rows*cols#單個圖片的大小
    fmt='>' + str(image_size) + 'B'#單個圖片的format

    for i in range(imgNum):
        images[i] = np.array(struct.unpack_from(fmt, file_content, offset))
        # images[i] = np.array(struct.unpack_from(fmt, file_content, offset)).reshape((rows, cols))
        offset += struct.calcsize(fmt)
    return images

#讀取標簽
def read_label(file_name):
    file_handle = open(file_name, "rb")  # 以二進制打開文檔
    file_content = file_handle.read()  # 讀取到緩沖區中

    head = struct.unpack_from('>II', file_content, 0)  # 取前2個整數,返回一個元組
    offset = struct.calcsize('>II')

    labelNum = head[1]  # label數
    # print(labelNum)
    bitsString = '>' + str(labelNum) + 'B'  # fmt格式:'>47040000B'
    label = struct.unpack_from(bitsString, file_content, offset)  # 取data數據,返回一個元組
    return np.array(label)

def loadDataSet():
    #mnist
    train_x_filename="train-images-idx3-ubyte"
    train_y_filename="train-labels-idx1-ubyte"
    test_x_filename="t10k-images-idx3-ubyte"
    test_y_filename="t10k-labels-idx1-ubyte"

    # #fashion mnist
    # train_x_filename="fashion-train-images-idx3-ubyte"
    # train_y_filename="fashion-train-labels-idx1-ubyte"
    # test_x_filename="fashion-t10k-images-idx3-ubyte"
    # test_y_filename="fashion-t10k-labels-idx1-ubyte"

    train_x=read_image(train_x_filename)#60000*784 的矩陣
    train_y=read_label(train_y_filename)#60000*1的矩陣
    test_x=read_image(test_x_filename)#10000*784
    test_y=read_label(test_y_filename)#10000*1

    train_x=normalize(train_x)
    test_x=normalize(test_x)
    # #調試的時候讓速度快點,就先減少數據集大小
    # train_x=train_x[0:1000,:]
    # train_y=train_y[0:1000]
    # test_x=test_x[0:500,:]
    # test_y=test_y[0:500]

    return train_x, test_x, train_y, test_y

def  normalize(data):#圖片像素二值化,變成0-1分布
    m=data.shape[0]
    n=np.array(data).shape[1]
    for i in range(m):
        for j in range(n):
            if data[i,j]!=0:
                data[i,j]=1
            else:
                data[i,j]=0
    return data

#(1)計算先驗概率及條件概率
def train_model(train_x,train_y,classNum):#classNum是指有10個類別,這里的train_x是已經二值化,
    m=train_x.shape[0]
    n=train_x.shape[1]
    # prior_probability=np.zeros(n)#先驗概率
    prior_probability=np.zeros(classNum)#先驗概率
    conditional_probability=np.zeros((classNum,n,2))#條件概率
    #計算先驗概率和條件概率
    for i in range(m):#m是圖片數量,共60000張
        img=train_x[i]#img是第i個圖片,是1*n的行向量
        label=train_y[i]#label是第i個圖片對應的label
        prior_probability[label]+=1#統計label類的label數量(p(Y=ck),下標用來存放label,prior_probability[label]除以n就是某個類的先驗概率
        for j in range(n):#n是特征數,共784個
            temp=img[j].astype(int)#img[j]是0.0,放到下標去會顯示錯誤,只能用整數

            conditional_probability[label][j][temp] += 1

            # conditional_probability[label][j][img[j]]+=1#統計的是類為label的,在每個列中為1或者0的行數為多少,img[j]的值要么就是0要么就是1,計算條件概率

    #將概率歸到[1.10001]
    for i in range(classNum):
        for j in range(n):
            #經過二值化的圖像只有0,1兩種取值
            pix_0=conditional_probability[i][j][0]
            pix_1=conditional_probability[i][j][1]

            #計算0,1像素點對應的條件概率
            probability_0=(float(pix_0)/float(pix_0+pix_1))*10000+1
            probability_1 = (float(pix_1)/float(pix_0 + pix_1)) * 10000 + 1

            conditional_probability[i][j][0]=probability_0
            conditional_probability[i][j][1]=probability_1
    return prior_probability,conditional_probability

#(2)對給定的x,計算先驗概率和條件概率的乘積
def cal_probability(img,label,prior_probability,conditional_probability):
    probability=int(prior_probability[label])#先驗概率
    n=img.shape[0]
    # print(n)
    for i in range(n):#應該是特征數
        probability*=int(conditional_probability[label][i][img[i].astype(int)])

    return probability

#確定實例x的類,相當於argmax
def predict(test_x,test_y,prior_probability,conditional_probability):#傳進來的test_x或者是train_x都是二值化后的
    predict_y=[]
    m=test_x.shape[0]
    n=test_x.shape[1]
    for i in range(m):
        img=np.array(test_x[i])#img已經是二值化以后的列向量
        label=test_y[i]
        max_label=0
        max_probability= cal_probability(img,0,prior_probability,conditional_probability)
        for j in range(1,10):#從下標為1開始,因為初始值是下標為0
            probability=cal_probability(img,j,prior_probability,conditional_probability)
            if max_probability<probability:
                max_probability=probability
                max_label=j
        predict_y.append(max_label)#用來記錄每行最大概率的label
    return np.array(predict_y)

def cal_accuracy(test_y,predict_y):
    m=test_y.shape[0]
    errorCount=0.0
    for i in range(m):
        if test_y[i]!=predict_y[i]:
            errorCount+=1
    accuracy=1.0-float(errorCount)/m
    return accuracy

if __name__=='__main__':
    classNum=10
    print("Start reading data...")
    time1=time.time()
    train_x, test_x, train_y, test_y=loadDataSet()
    train_x=normalize(train_x)
    test_x=normalize(test_x)

    time2=time.time()
    print("read data cost",time2-time1,"second")

    print("start training data...")
    prior_probability, conditional_probability=train_model(train_x,train_y,classNum)
    for i in range(classNum):
        print(prior_probability[i])#輸出一下每個標簽的總共數量
    time3=time.time()
    print("train data cost",time3-time2,"second")

    print("start predicting data...")
    predict_y=predict(test_x,test_y,prior_probability,conditional_probability)
    time4=time.time()
    print("predict data cost",time4-time3,"second")

    print("start calculate accuracy...")
    acc=cal_accuracy(test_y,predict_y)
    time5=time.time()
    print("accuarcy",acc)
    print("calculate accuarcy cost",time5-time4,"second")

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM