原文:常見機器學習方法的優缺點及適用場景:朴素貝葉斯

朴素貝葉斯 Naive Bayes 特點:基於貝葉斯定義和特征條件 屬性 獨立假設的分類器方法 優點:模型所需估計的參數很少,對缺失數據不太敏感,算法也比較簡單,具有很好的模型的可解釋性。朴素貝葉斯模型與其他分類方法相比具有最小的理論誤差率。 缺點:屬性之間相互獨立,這個假設在實際應用中往往是不成立的,在屬性個數比較多或者屬性之間相關性較大時,分類效果不好。 應用:朴素貝葉斯算法一般應用在文本分類 ...

2022-04-17 17:39 0 796 推薦指數:

查看詳情

機器學習(五)—朴素

  最近一直在看機器學習相關的算法,今天我們學習一種基於概率論的分類算法—朴素。本文在對朴素進行簡單介紹之后,通過Python編程加以實現。 一 朴素概述 ...

Thu Sep 03 05:37:00 CST 2015 1 3708
機器學習(一)—朴素

的條件下都是條件獨立的。 1、朴素朴素在哪里?   簡單來說:利用貝葉斯定理求解聯合概率P( ...

Fri May 04 19:45:00 CST 2018 0 3420
機器學習 - 朴素

簡介 朴素是一種基於概率進行分類的算法,跟之前的邏輯回歸有些相似,兩者都使用了概率和最大似然的思想。但與邏輯回歸不同的是,朴素斯通過先驗概率和似然概率計算樣本在每個分類下的概率,並將其歸為概率值最大的那個分類。朴素適用於文本分類、垃圾郵件處理等NLP下的多分類問題。 核心 ...

Fri Aug 06 01:51:00 CST 2021 0 199
機器學習-朴素

概率分類器: 朴素是一種直接衡量標簽和特征質檢的概率關系的有監督學習算法, 是一種專注分類的算法, 朴素的算法根源是基於概率論和數理統計的理論, 因此它是根正苗紅的概率模型. 關鍵概念: 聯合概率: X取值為x和Y的取值為y, 兩個事件同時發生的概率, 表示 ...

Mon Dec 13 23:49:00 CST 2021 0 765
常見機器學習算法優缺點

快。 4、決策樹可以很好的擴展到大型數據庫中,同時它的大小獨立於數據庫大小。 二、決策樹缺點 1、對缺失數據 ...

Fri Mar 31 08:30:00 CST 2017 0 5905
機器學習Sklearn系列:(四)朴素

3--朴素 原理 朴素本質上就是通過公式來對得到類別概率,但區別於通常的公式,朴素有一個默認條件,就是特征之間條件獨立。 條件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 公式可以寫成: \[p ...

Mon Jul 19 06:37:00 CST 2021 2 168
機器學習--朴素模型原理

朴素中的朴素是指特征條件獨立假設, 是指貝葉斯定理, 我們從貝葉斯定理開始說起吧. 1. 貝葉斯定理 貝葉斯定理是用來描述兩個條件概率之間的關系 1). 什么是條件概率? 如果有兩個事件A和B, 條件概率就是指在事件B發生的條件下, 事件A發生的概率, 記作P(A|B ...

Sun Mar 17 00:14:00 CST 2019 0 1969
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM