0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...
一 定義 損失函數 loss function 是用來估量你模型的預測值f x 與真實值Y的不一致程度,它是一個非負實值函數,通常使用L Y, f x 來表示,損失函數越小,模型的魯棒性就越好。 經典機器學習算法,他們最本質的區別是分類思想 預測f x 的表達式 不同,有的是基於概率模型,有的是動態規划,表象的區別就是最后的損失函數不同。 二 分類 損失函數 loss function 分為經驗風 ...
2022-02-15 11:24 0 1023 推薦指數:
0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...
###基礎概念 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,換句話,可以解釋為我們構建模型得到的預測值與真實值之間的差距。它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心 ...
參考鏈接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方損失函數:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
信息熵 信息熵也被稱為熵,用來表示所有信息量的期望。 公式如下: 例如在一個三分類問題中,貓狗馬的概率如下: label 貓 狗 馬 ...
損失函數是機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...
損失函數是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常可以表示成如下式 ...
分類損失函數 一、LogLoss對數損失函數(邏輯回歸,交叉熵損失) 有些人可能覺得邏輯回歸的損失函數就是平方損失,其實並不是。平方損失函數可以通過線性回歸在假設樣本是高斯分布的條件下推導得到,而邏輯回歸得到的並不是平方損失。在邏輯回歸的推導中,它假設樣本服從伯努利分布 ...
損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常 ...