轉自:3.4 解決樣本類別分布不均衡的問題 | 數據常青藤 (組織排版上稍有修改) 3.4 解決樣本類別分布不均衡的問題 說明:本文是《Python數據分析與數據化運營》中的“3.4 解決樣本類別分布不均衡的問題”。 -----------------------------下面 ...
樣本不均衡問題 主要分為以下幾類: 每個類別的樣本數量不均衡 划分樣本所屬類別的難易程度不同 Focal loss focal loss用來解決難易樣本數量不均衡,重點讓模型更多關注難分樣本,少關注易分樣本。假設正樣本 label 少,負樣本多,定義focal loss如下 Loss alpha y hat yln y hat alpha y hat y ln y hat 其中y hat: ba ...
2022-04-15 09:05 0 917 推薦指數:
轉自:3.4 解決樣本類別分布不均衡的問題 | 數據常青藤 (組織排版上稍有修改) 3.4 解決樣本類別分布不均衡的問題 說明:本文是《Python數據分析與數據化運營》中的“3.4 解決樣本類別分布不均衡的問題”。 -----------------------------下面 ...
所謂不平衡指的是:不同類別的樣本數量差異非常大。 數據規模上可以分為大數據分布不均衡和小數據分布不均衡。大數據分布不均衡:例如擁有1000萬條記錄的數據集中,其中占比50萬條的少數分類樣本便於屬於這種情況。小數據分布不均衡:例如擁有1000條數據樣本的數據集中,其中占有10條的少數分類樣本便於 ...
##基礎概念 類別不均衡是指在分類學習算法中,不同類別樣本的比例相差懸殊,它會對算法的學習過程造成重大的干擾。比如在一個二分類的問題上,有1000個樣本,其中5個正樣本,995個負樣本,在這種情況下,算法只需將所有的樣本預測為負樣本,那么它的精度也可以達到99.5%,雖然結果的精度很高,但它 ...
通常二分類使用交叉熵損失函數,但是在樣本不均衡下,訓練時損失函數會偏向樣本多的一方,造成訓練時損失函數很小,但是對樣本較小的類別識別精度不高。 解決辦法之一就是給較少的類別加權,形成加權交叉熵(Weighted cross entropy loss)。今天看到兩個方法將權值作為類別 ...
解決的問題:消除正負樣本比例不平衡(One-Stage算法需要產生超大量的預選框,模型被大量負樣本所主導,Focal Loss對此種情況卓有成效。),並且挖掘難負樣本(難負樣本即為一些很難區分是正樣本還是負樣本的負樣本。其對立的就是一些簡單的負樣本,很容易區分出來是負樣本,其前向傳播的loss很小 ...
轉載請注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 線性回歸中提到最小二乘損失函數及其相關知識。對於這一部分知識不清楚的同學可以參考上一篇文章《線性回歸、梯度下降》。本篇文章主要講解使用最小二乘法法構建損失函數和最小化損失函數的方法 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 損失函數可以看做 誤差部分(loss term) + 正則化部分 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 損失函數可以看做 誤差 ...