原文:k-prototypes聚類算法

k prototypes聚類 https: github.com nicodv kmodes.git k prototypes算法 K prototype是K means與K modes的一種集合形式,適用於數值類型與字符類型集合的混合型數據。 k prototypes算法在聚類的過程中,是將數據的數值型變量和類別型變量拆開,分開計算樣本間變量的距離,再將兩者相加,視為樣本間的距離。 k pro ...

2022-02-10 14:19 0 3137 推薦指數:

查看詳情

Python 混合數據聚類k-prototypes算法的應用

一、k-prototypes算法 k-prototypes算法聚類的過程中,是將數據的數值型變量和類別型變量拆開,分開計算樣本間變量的距離,再將兩者相加,視為樣本間的距離。 k-prototypes聚類的准則就是使用一個合適的損失函數去度量數值型和分類變量對原型的距離 ...

Thu Oct 15 01:01:00 CST 2020 2 1331
聚類算法(K-means聚類算法)

在數據分析挖掘過程中常用的聚類算法有1.K-Means聚類,2.K-中心點,3.系統聚類. 1.K-均值聚類在最小誤差基礎上將數據划分為預定的類數K(采用距離作為相似性的評價指標).每次都要遍歷數據,所以大數據速度慢 2.k-中心點,不采用K-means中的平均值作為簇中心點,而是選中 ...

Sun May 13 23:37:00 CST 2018 0 2470
聚類和EM算法——K均值聚類

python大戰機器學習——聚類和EM算法   注:本文中涉及到的公式一律省略(公式不好敲出來),若想了解公式的具體實現,請參考原著。 1、基本概念   (1)聚類的思想:     將數據集划分為若干個不想交的子集(稱為一個簇cluster),每個簇 ...

Mon Jul 02 02:59:00 CST 2018 0 1622
聚類算法——K-means(上)

  首先要來了解的一個概念就是聚類,簡單地說就是把相似的東西分到一組,同 Classification (分類)不同,對於一個 classifier ,通常需要你告訴它“這個東西被分為某某類”這樣一些例子,理想情況下,一個 classifier 會從它得到的訓練集中進行“學習”,從而具備對未知數 ...

Fri Mar 09 04:44:00 CST 2012 3 60315
K-means聚類算法

一、思想 聚類:人以群分、物以類聚,使得簇內的距離接近,簇間距離遠。 可以做推薦冷啟動,區域推薦熱榜、用戶畫像 二、算法步驟: 1、隨機設置K個特征空間內的點作為初始的聚類中心 2、對於其他每個點計算到K個中心的距離,從中選出距離最近的⼀個點作為⾃⼰的標記 3、接着對着標記 ...

Tue Nov 02 17:47:00 CST 2021 0 425
聚類K均值聚類和EM算法

這篇博客整理K均值聚類的內容,包括: 1、K均值聚類的原理; 2、初始類中心的選擇和類別數K的確定; 3、K均值聚類和EM算法、高斯混合模型的關系。 一、K均值聚類的原理 K均值聚類K-means)是一種基於中心的聚類算法,通過迭代,將樣本分到K個類中,使得每個樣本與其所屬類 ...

Mon May 13 21:03:00 CST 2019 0 1086
K-均值聚類算法

一.k均值聚類算法 對於樣本集。"k均值"算法就是針對聚類划分最小化平方誤差: 其中是簇Ci的均值向量。從上述公式中可以看出,該公式刻畫了簇內樣本圍繞簇均值向量的緊密程度,E值越小簇內樣本的相似度越高。 工作流程: k-均值算法的描述如下: 接下 ...

Wed Jun 06 03:08:00 CST 2018 0 6839
K-Means 聚類算法

K-Means 概念定義: K-Means 是一種基於距離的排他的聚類划分方法。 上面的 K-Means 描述中包含了幾個概念: 聚類(Clustering):K-Means 是一種聚類分析(Cluster Analysis)方法。聚類就是將數據對象分組成為多個類或者簇 ...

Tue Feb 10 07:06:00 CST 2015 3 17123
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM