Lasso回歸於嶺回歸非常相似,它們的差別在於使用了不同的正則化項。最終都實現了約束參數從而防止過擬合的效果。但是Lasso之所以重要,還有另一個原因是:Lasso能夠將一些作用比較小的特征的參數訓練為0,從而獲得稀疏解。也就是說用這種方法,在訓練模型的過程中實現了降維(特征篩選)的目的 ...
背景回顧: 線性回歸的基本概念,應用場景 回顧Coursera上ML的基本概念,什么是hypothesis 什么是cost function 什么是objective function LASSO回歸的基本概念,跟普通回歸有什么區別 解決了模型的哪些缺陷 構建LASSO回歸模型的基本步驟 Python代碼實現,搞清楚函數所在的包,以及每個函數參數的意義 搞清楚每種模型里面的核心參數,如何得到最佳參 ...
2021-12-22 14:51 0 6000 推薦指數:
Lasso回歸於嶺回歸非常相似,它們的差別在於使用了不同的正則化項。最終都實現了約束參數從而防止過擬合的效果。但是Lasso之所以重要,還有另一個原因是:Lasso能夠將一些作用比較小的特征的參數訓練為0,從而獲得稀疏解。也就是說用這種方法,在訓練模型的過程中實現了降維(特征篩選)的目的 ...
線性回歸——最小二乘 線性回歸(linear regression),就是用線性函數 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去擬合一組數據 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...
代碼實現: 結果: 總結:各回歸算法在相同的測試數據中表現差距很多,且算法內的配置參數調整對自身算法的效果影響也是巨大的, 因此合理挑選合適的算法和配置合適的配置參數是使用算法的關鍵! ...
python代碼實現回歸分析--線性回歸 Aming 科技 ...
線性回歸是機器學習的基礎,用處非常廣泛,在日常工作中有很大作用。 1.什么是線性回歸 通過多次取點,找出符合函數的曲線,那么就可以完成一維線性回歸。 2.數學表示 是截距值,為偏移量。 因為單純計算多項式需要很大空間,所以就需要將式子變形,轉化為矩陣乘積形式。 3. ...
多元線性回歸模型中,如果所有特征一起上,容易造成過擬合使測試數據誤差方差過大;因此減少不必要的特征,簡化模型是減小方差的一個重要步驟。除了直接對特征篩選,來也可以進行特征壓縮,減少某些不重要的特征系數,系數壓縮趨近於0就可以認為舍棄該特征。 嶺回歸(Ridge Regression)和Lasso ...
目錄 線性回歸——最小二乘 Lasso回歸和嶺回歸 為什么 lasso 更容易使部分權重變為 0 而 ridge 不行? References 線性回歸很簡單,用線性函數擬合數據,用 mean square error (mse) 計算損失(cost ...
一 線性回歸(Linear Regression ) 1. 線性回歸概述 回歸的目的是預測數值型數據的目標值,最直接的方法就是根據輸入寫出一個求出目標值的計算公式,也就是所謂的回歸方程,例如y = ax1+bx2,其中求回歸系數的過程就是回歸。那么回歸是如何預測的呢?當有了這些回歸 ...