其實這是我之前最想第一篇來寫的隨筆了,今天就先把這一部分寫一寫吧。 1.問題 一個醫療診斷問題有兩個可選的假設:病人有癌症、病人無癌症可用數據來自化驗結果:陰性和陽性。有先驗知識:在所有人口中 ...
. 統計決策的基本概念 世紀 年代,Wald提出了把統計推斷問題看成是人與自然的一種博弈過程,由此建立了統計決策理論。 統計決策問題的三個要素 在前幾章講的統計問題,都可以歸結為一個統計決策問題,也就是建立所謂的統計決策函數,統計決策問題由三個因素組成: 樣本空間和分布族 樣本空間:設樣本 X .. Xn 來自總體 F x, , 未知,則樣本所有可能值組成的集合稱為樣本空間,記為 X 。 分布族 ...
2021-12-17 17:24 0 1004 推薦指數:
其實這是我之前最想第一篇來寫的隨筆了,今天就先把這一部分寫一寫吧。 1.問題 一個醫療診斷問題有兩個可選的假設:病人有癌症、病人無癌症可用數據來自化驗結果:陰性和陽性。有先驗知識:在所有人口中 ...
(本文為原創學習筆記,主要參考《模式識別(第三版)》(張學工著,清華大學出版社出版)) 1.概念 將分類看做決策,進行貝葉斯決策時考慮各類的先驗概率和類條件概率,也即后驗概率。考慮先驗概率意味着對樣本總體的認識,考慮類條件概率是對每一類中某個特征出現頻率的認識。由此不難發現,貝葉斯決策 ...
https://zhuanlan.zhihu.com/p/38553838 1 概率論和統計學的區別 簡單來說,概率論和統計學解決的問題是互逆的。假設有一個具有不確定性的過程(process),然后這個過程可以隨機的產生不同的結果(outcomes)。則概率論和統計學的區別可以描述 ...
貝葉斯方法有着非常廣泛的應用,但是初學者容易被里面的概率公式的給嚇到,以至於望而卻步。所以有大師專門寫個tutorial,命名為“bayesian inference with tears”。 我本人也深受其苦,多次嘗試學習而不得其門而入。終於有一天,一種醍醐灌頂的感覺在腦海中出現,思路一下子清晰 ...
【機器學習】貝葉斯線性回歸(最大后驗估計+高斯先驗) - qq_32742009的博客 - CSDN博客 https://blog.csdn.net/qq_32742009/article/details/81485887 貝葉斯優化(BO)的迭代公式 ...
數據來自於一個不完全清楚的過程。以投擲硬幣為例,嚴格意義上講,我們無法預測任意一次投硬幣的結果是正面還是反面,只能談論正面或反面出現的概率。在投擲過程中有大量會影響結果的不可觀測的變量,比如投擲的 ...
【此文介紹了貝葉斯公式】 現在舉一個例子說明怎么使用貝葉斯公式來做決策。 例子: 假設有100個人,每個人都有自己的生日。1年有12個月,假設這100個人的生日從1月到12月的人數的分布情況如下: 3 4 5 7 10 13 14 15 ...
通過貝葉斯等方式實現分類器時,需要首先得到先驗概率以及類條件概率密度。但在實際的應用中,先驗概率與類條件概率密度並不能直接獲得,它們都需要通過估計的方式來求得一個近似解。若先驗概率的分布形式已知(或可以假設為某個分布),但分布的參數未知,則可以通過極大似然或者貝葉斯來獲得對於參數 ...