原文:【機器學習基礎】常見損失函數總結

在機器學習三步走中,其中最重要的就是第二步找到用於衡量模型好壞的方法,也就是損失函數,通過求解最小化損失,從而求得模型的參數。前面分別對線性回歸 LR以及實戰部分的SVM 決策樹以及集成學習算法進行了概述,其中都用到了不同的損失函數,今天在這里對機器學習中常見的損失函數進行一個總結。 常見損失函數總結 上面說到,損失函數的選擇對於模型訓練起到了至關重要的作用,在不同的算法中往往有着不同的損失函數。 ...

2021-11-09 23:43 0 1050 推薦指數:

查看詳情

機器學習常見損失函數

  損失函數機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...

Mon Jul 02 04:34:00 CST 2018 0 2050
機器學習常見損失函數

損失函數是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常可以表示成如下式 ...

Fri Apr 27 09:14:00 CST 2018 0 7121
機器學習】什么是損失函數

一、定義 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。 經典機器學習算法,他們最本質的區別是分類思想(預測f(x)的表達式)不同,有的是 ...

Tue Feb 15 19:24:00 CST 2022 0 1023
機器學習常見的幾種損失函數

     通常機器學習每一個算法中都會有一個目標函數,算法的求解過程是通過對這個目標函數優化的過程。在分類或者回歸問題中,通常使用損失函數(代價函數)作為其目標函數損失函數用來評價模型的預測值和真實值不一樣的程度,損失函數越好,通常模型的性能越好。不同的算法使用的損失函數不一樣。   損失 ...

Mon Jan 01 04:38:00 CST 2018 0 19261
機器學習損失函數

0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...

Fri Dec 01 05:17:00 CST 2017 0 4094
機器學習-——損失函數

###基礎概念 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,換句話,可以解釋為我們構建模型得到的預測值與真實值之間的差距。它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心 ...

Tue Oct 23 05:26:00 CST 2018 0 5430
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM