1. 平方損失函數 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 這時經驗風險函數是MSE,例如在線性回歸中出現 2. 絕對值損失函數: $$L(f(x),y)=\vert f(x)-y\vert ...
在機器學習三步走中,其中最重要的就是第二步找到用於衡量模型好壞的方法,也就是損失函數,通過求解最小化損失,從而求得模型的參數。前面分別對線性回歸 LR以及實戰部分的SVM 決策樹以及集成學習算法進行了概述,其中都用到了不同的損失函數,今天在這里對機器學習中常見的損失函數進行一個總結。 常見損失函數總結 上面說到,損失函數的選擇對於模型訓練起到了至關重要的作用,在不同的算法中往往有着不同的損失函數。 ...
2021-11-09 23:43 0 1050 推薦指數:
1. 平方損失函數 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 這時經驗風險函數是MSE,例如在線性回歸中出現 2. 絕對值損失函數: $$L(f(x),y)=\vert f(x)-y\vert ...
損失函數是機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...
損失函數是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常可以表示成如下式 ...
就是logistic回歸,策略最常用的方法是用一個損失函數(loss function)或代價函數(cost funct ...
一、定義 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。 經典機器學習算法,他們最本質的區別是分類思想(預測f(x)的表達式)不同,有的是 ...
通常機器學習每一個算法中都會有一個目標函數,算法的求解過程是通過對這個目標函數優化的過程。在分類或者回歸問題中,通常使用損失函數(代價函數)作為其目標函數。損失函數用來評價模型的預測值和真實值不一樣的程度,損失函數越好,通常模型的性能越好。不同的算法使用的損失函數不一樣。 損失 ...
0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...
###基礎概念 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,換句話,可以解釋為我們構建模型得到的預測值與真實值之間的差距。它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心 ...