目錄 為什么要初始化 公式推導 初始化方法 引入激活函數 初始化方法分類 一、為什么要初始化 在深度學習中,神經網絡的權重初始化方法(weight initialization)對模型的收斂速度和性能有着至關重要的影響 ...
前言 本文介紹了為什么初始化很重要,總結了常用的幾種初始化方法:全零或等值初始化 正態初始化 均勻初始化 Xavier初始化 He初始化和Pre trained初始化,並介紹了幾個還活躍的初始化方向:數據相關初始化 稀疏權重矩陣和隨機正交矩陣初始化。 為什么初始化很重要 不正確初始化的權重會導致梯度消失或爆炸問題,從而對訓練過程產生負面影響。 對於梯度消失問題,權重更新很小,導致收斂速度變慢 這 ...
2021-10-04 15:52 0 317 推薦指數:
目錄 為什么要初始化 公式推導 初始化方法 引入激活函數 初始化方法分類 一、為什么要初始化 在深度學習中,神經網絡的權重初始化方法(weight initialization)對模型的收斂速度和性能有着至關重要的影響 ...
https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article ...
from:http://blog.csdn.net/u013989576/article/details/76215989 權值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均勻分布初始化(uniform ...
1,概述 神經網絡中的權值初始化方法有很多,但是這些方法的設計也是遵循一些邏輯的,並且也有自己的適用場景。首先我們假定輸入的每個特征是服從均值為0,方差為1的分布(一般輸入到神經網絡的數據都是要做歸一化的,就是為了達到這個條件)。 為了使網絡中的信息更好的傳遞,每一層的特征的方差應該 ...
權重初始化 模型權重的初始化對於網絡的訓練很重要, 不好的初始化參數會導致梯度傳播問題, 降低訓練速度; 而好的初始化參數, 能夠加速收斂, 並且更可能找到較優解. 如果權重一開始很小,信號到達最后也會很小;如果權重一開始很大,信號到達最后也會很大。不合適的權重初始化會使得隱藏層的輸入 ...
1. 參數初始化的目的是什么? 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為0。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 ...
根據deeplearn.ai吳恩達深度學習課程3.11總結 因為如果W初始化為0 則對於任何Xi,每個隱藏層對應的每個神經元的輸出都是相同的,這樣即使梯度下降訓練,無論訓練多少次,這些神經元都是對稱的,無論隱藏層內有多少個結點,都相當於在訓練同一個函數。 ...
深度學習中神經網絡的幾種權重初始化方法 2018年04月25日 15:01:32 天澤28 閱讀數 11981更多 分類專欄: machine learning&deep learning ...