梯度下降法(Gradient Descent) 優化思想:用當前位置的負梯度方向作為搜索方向,亦即為當前位置下降最快的方向,也稱“最速下降法”。越接近目標值時,步長越小,下降越慢。 如下圖所示,梯度下降不一定能找到全局最優解,可能尋找到的是局部最優解。(當損失函數是凸函數時 ...
再進行Mini batch 梯度下降法學習之前,我們首先對梯度下降法進行理解 一 梯度下降法 Gradient Descent 優化思想:用當前位置的負梯度方向作為搜索方向,亦即為當前位置下降最快的方向,也稱 最速下降法 。越接近目標值時,步長越小,下降越慢。 首先來看看梯度下降的一個直觀的解釋。比如我們在一座大山上的某處位置,由於我們不知道怎么下山,於是決定走一步算一步,也就是在每走到一個位置的 ...
2021-08-24 15:45 0 195 推薦指數:
梯度下降法(Gradient Descent) 優化思想:用當前位置的負梯度方向作為搜索方向,亦即為當前位置下降最快的方向,也稱“最速下降法”。越接近目標值時,步長越小,下降越慢。 如下圖所示,梯度下降不一定能找到全局最優解,可能尋找到的是局部最優解。(當損失函數是凸函數時 ...
理解 mini-batch 梯度下降法( Understanding mini-batch gradient descent) 使用 batch 梯度下降法時,每次迭代你都需要歷遍整個訓練集,可以預期每次迭代成本都會下降,所以如果成本函數J是迭代次數的一個函數,它應該會隨着每次迭代而減少,如果在 ...
大規模機器學習: 線性回歸的梯度下降算法:Batch gradient descent(每次更新使用全部的訓練樣本) 批量梯度下降算法(Batch gradient descent): 每計算一次梯度會遍歷全部的訓練樣本,如果訓練樣本的比較多時,內存消耗 ...
1.mini-batch梯度下降 在前面學習向量化時,知道了可以將訓練樣本橫向堆疊,形成一個輸入矩陣和對應的輸出矩陣: 當數據量不是太大時,這樣做當然會充分利用向量化的優點,一次訓練中就可以將所有訓練樣本涵蓋,速度也會較快。但當數據量急劇增大,達到百萬甚至更大的數量級時,組成的矩陣將極其龐大 ...
有樣本的Loss再計算一次梯度更新參數的方式效率是很低的。因此就有了隨機梯度下降和mini-batch梯度下 ...
一.梯度下降 梯度下降就是最簡單的用於神經網絡當中用於更新參數的用法,計算loss的公式如下: 有了loss function之后,我們立馬通過這個loss求解出梯度,並將梯度用於參數theta的更新,如下所示: 這樣做之后,我們只需要遍歷所有的樣本,就可以得到一個 ...
優化函數 損失函數 BGD 我們平時說的梯度現將也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent)。 對目標(損失)函數求導 沿導數相反方向移動參數 在梯度下降中,對於參數 ...
感謝參考原文-http://bjbsair.com/2020-03-27/tech-info/7090.html mini batch mini batch的思想非常朴素,既然全體樣本當中數據量太大,會使得我們迭代的時間過長,那么我們 縮小數據規模 行不行? 那怎么減小規模呢,很簡單,我們隨機 ...