一、從零開始實現 1.1 首先引入Fashion-MNIST數據集 1.2 初始化模型參數 原始圖像中每個樣本都是28*28的,所以要展平每個圖像成長度為784的向量。 權重784*10,偏置1*10 1.3 定義softmax操作 如果為0則留下 ...
一 導入 二 初始化參數 三 Softmax的實現 四 優化算法 五 訓練 ...
2021-07-30 21:20 0 149 推薦指數:
一、從零開始實現 1.1 首先引入Fashion-MNIST數據集 1.2 初始化模型參數 原始圖像中每個樣本都是28*28的,所以要展平每個圖像成長度為784的向量。 權重784*10,偏置1*10 1.3 定義softmax操作 如果為0則留下 ...
定義和初始化模型 softamx和交叉熵損失函數 定義優化算法 訓練模型 定義和初始化模型 softmax的輸出層是一個全連接層,所以我們使用一個線性模塊就可以,因為前面我們數據返回的每個batch的樣本X的形狀為(batch_size,1,28,28 ...
跟李沐學Ai 03 安裝【動手學深度學習v2】 可以考慮直接使用Google的colab,https://colab.research.google.com/drive/18-HoW6P3L6N0rWBWLc-b6xB83cD3cZZn 命令1 sudo apt update[sudo ...
一、什么是softmax? 有一個數組S,其元素為Si ,那么vi 的softmax值,就是該元素的指數與所有元素指數和的比值。具體公式表示為: softmax回歸本質上也是一種對數據的估計 二、交叉熵損失函數 在估計損失時,尤其是概率上的損失 ...
1 softmax回歸的從零開始實現 出現的問題:cannot import name 'np' from 'mxnet' (unknown location) 報錯:表示沒有這個包 原因:激活環境是能夠運行代碼的前提 解決辦法:在d2l-zh目錄運行conda ...
task0101.線性回歸 優化函數 - 隨機梯度下降 當模型和損失函數形式較為簡單時,上面的誤差最小化問題的解可以直接用公式表達出來。這類解叫作解析解(analytical solution)。本節使用的線性回歸和平方誤差剛好屬於這個范疇。然而,大多數深度學習模型並沒有解析解,只能 ...
目錄 Softmax回歸 損失函數 圖片分類數據集 Softmax回歸從零開始實現 Softmax回歸簡潔實現 QA Softmax回歸 首先簡單理解softmax:就是將一個回歸值轉換成一個概率(也就是把一個實數,定在[0,1.]中 ...
目錄 softmax的基本概念 交叉熵損失函數 模型訓練和預測 獲取Fashion-MNIST訓練集和讀取數據 get dataset softmax從零開始的實現 獲取訓練集數據和測試集數據 模型參數初始化 ...