應用場景 主要是解決大規模數據下不需要精確過濾的場景,如檢查垃圾郵件地址,爬蟲URL地址去重,解決緩存穿透問題等。 布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數。布隆過濾器可以用於檢索一個元素是否 ...
位圖 BitMap 在討論布隆過濾器之前,先看一下位圖是什么。 首先考慮一個問題場景 假如需要過濾某些不安全網頁,現有 億個黑名單頁面,每個網頁的URL最多占用 字節。現要設計一種網頁過濾系統,可以根據網頁的URL判斷該網頁是否在黑名單上。 最直觀的想法必然是使用一個集合或者說數據結構來存放黑名單URL,比如查找樹 Set map,但是無論哪種,不可避免的是我們需要存儲原始的URL值,但是我們都 ...
2021-07-15 21:20 3 264 推薦指數:
應用場景 主要是解決大規模數據下不需要精確過濾的場景,如檢查垃圾郵件地址,爬蟲URL地址去重,解決緩存穿透問題等。 布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數。布隆過濾器可以用於檢索一個元素是否 ...
直觀的說,bloom算法類似一個hash set,用來判斷某個元素(key)是否在某個集合中。和一般的hash set不同的是,這個算法無需存儲key的值,對於每個key,只需要k個比特位,每個存儲一個標志,用來判斷key是否在集合中。 算法: 1. 首先需要k個hash函數,每個函數 ...
布隆過濾器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它實際上是由一個很長的二進制向量和一系列隨機映射函數組成,布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤 ...
一 前言 假如有一個15億用戶的系統,每天有幾億用戶訪問系統,要如何快速判斷是否為系統中的用戶呢? 方法一,將15億用戶存儲在數據庫中,每次用戶訪問系統,都到數據庫進行查詢判斷,准確性高,但 ...
介紹: 布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數。布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都比一般的算法要好的多,缺點是有一定的誤識別率和刪除困難。 應用例子 ...
布隆過濾器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它實際上是由一個很長的二進制向量和一系列隨機映射函數組成,布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率(假 ...
一. 布隆過濾器 直觀的說,bloom算法類似一個hash set,用來判斷某個元素(key)是否在某個集合中。和一般的hash set不同的是,這個算法無需存儲key的值,對於每個key,只需要k個比特位,每個存儲一個標志,用來判斷key是否在集合中。 算法:1. 首先需要k個hash函數 ...
參考: https://blog.csdn.net/pipisorry/article/details/62443757 https://www.cnblogs.com/liyulong1982/ ...