原文鏈接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要內容:機器學習中常見的幾種評價指標,它們各自的含義和計算(注意本文針對二元分類器!) 1、混淆矩陣 True Positive(真正,TP):將正類預測 ...
當我們訓練好一模型之后,如何判斷模型的好壞呢,這就需要用到評價指標 evaluation metrics 。下面介紹一下在二分類任務中的一些評價指標。 真實 Positive 正方形左側 真實 Negative 正方形右側 預測 Positive 圓形內 TP True Positive FP False Positve 預測 Negative 圓形外 FN False Negative TN T ...
2021-06-04 16:35 0 184 推薦指數:
原文鏈接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要內容:機器學習中常見的幾種評價指標,它們各自的含義和計算(注意本文針對二元分類器!) 1、混淆矩陣 True Positive(真正,TP):將正類預測 ...
在機器學習的算法評估中,尤其是分類算法評估中,我們經常聽到精確率(precision)與召回率(recall),RoC曲線與PR曲線這些概念,那這些概念到底有什么用處呢? 首先,我們需要搞清楚幾個拗口的概念: 1. TP, FP, TN, FN ...
在機器學習的算法評估中,尤其是分類算法評估中,我們經常聽到精確率(precision)與召回率(recall),RoC曲線與PR曲線這些概念,那這些概念到底有什么用處呢? 首先,我們需要搞清楚幾個拗口的概念: 1. TP, FP, TN, FN True ...
自然語言處理(ML),機器學習(NLP),信息檢索(IR)等領域,評估(evaluation)是一個必要的工作,而其評價指標往往有如下幾點:准確率(accuracy),精確率(Precision),召回率(Recall)和F1-Measure。 本文將簡單介紹其中幾個概念。中文中這幾個評價指標 ...
參考鏈接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具體更詳細的可以查閱周志華的西瓜書第二章,寫的非常詳細~ 一、機器學習性能評估指標 1.准確率(Accurary) 准確率是我們最常見的評價指標,而且很容易理解,就是被分對 ...
本篇博客的圖源來自 zhwhong,轉載僅作學習使用! 在分類任務中,人們總是喜歡基於錯誤率來衡量分類器任務的成功程度。錯誤率指的是在所有測試樣例中錯分的樣例比例。實際上,這樣的度量錯誤掩蓋了樣例如何被分錯的事實。在機器學習中,有一個普遍適用的稱為混淆矩陣(confusion ...
准確率、精確率(查准率)、召回率(查全率)、F1值、ROC曲線的AUC值,都可以作為評價一個機器學習模型好壞的指標(evaluation metrics),而這些評價指標直接或間接都與混淆矩陣有關,前四者可以從混淆矩陣中直接計算得到,AUC值則要通過ROC曲線進行計算,而ROC曲線的橫縱坐標 ...
原文: http://blog.csdn.net/t710smgtwoshima/article/details/8215037 Recall(召回率);Precision(准確率);F1-Meature(綜合評價指標); 在信息檢索 ...