原文:Kmeans聚類算法的Sklearn實現

一 KMeans算法原理 . KMeans算法關鍵概念:簇與質心 簇:KMeans算法將一組N個樣本的特征矩陣X划分為K個無交集的簇,直觀上看是一組一組聚集在一起的數據,在一個簇中的數據就認為是同一類。簇就是聚類的結果表現。 質心:簇中所有數據的均值U通常被認為這個簇的 質心 。 . KMeans算法的實現原理 KMeans聚類算法實現的原理就是簇內數據相似性最高,不同簇類的數據的相似性最低。進而 ...

2021-05-09 20:12 0 2986 推薦指數:

查看詳情

sklearn KMeans聚類算法(總結)

基本原理 Kmeans是無監督學習的代表,沒有所謂的Y。主要目的是分類,分類的依據就是樣本之間的距離。比如要分為K類。步驟是: 隨機選取K個點。 計算每個點到K個質心的距離,分成K個簇。 計算K個簇樣本的平均值作新的質心 循環2、3 位置不變,距離完成 距離 ...

Thu Nov 08 02:40:00 CST 2018 0 4932
kmeans均值聚類算法實現

這個算法中文名為k均值聚類算法,首先我們在二維的特殊條件下討論其實現的過程,方便大家理解。 第一步.隨機生成質心 由於這是一個無監督學習的算法,因此我們首先在一個二維的坐標軸下隨機給定一堆點,並隨即給定兩個質心,我們這個算法的目的就是將這一堆點根據它們自身的坐標特征分為兩類,因此選取了兩個質心 ...

Mon Jul 15 06:54:00 CST 2019 0 603
Kmeans聚類算法原理與實現

Kmeans聚類算法 1 Kmeans聚類算法的基本原理 K-means算法是最為經典的基於划分的聚類方法,是十大經典數據挖掘算法之一。K-means算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類 ...

Thu Aug 27 05:54:00 CST 2015 0 2067
sklearn實踐(一):kmeans聚類

sklearn實踐(一):kmeans聚類 實踐往往比理論要經歷更多的挫折。 一、數據處理 官方給的案例里用的都是sklearn自帶的數據集,只要import之后便萬事大吉,但實際中我們采用的數據往往沒有那么規整,也不是可以一下就fit到模型里去的。經過這次經歷,打算整理一下大致思路 ...

Sun Jul 12 18:57:00 CST 2020 0 3798
聚類--K均值算法:自主實現sklearn.cluster.KMeans調用

1. (一)選取初始數據中的k個對象作為初始的中心,每個對象代表一個聚類中心 (二) 對於樣本中的數據對象,根據它們與這些聚類中心的歐氏距離,按距離最近的准則將它們分到距離它們最近的聚類中心所對應的類 (三)更新聚類中心:將每個類別中所有對象所對應的均值作為該類 ...

Tue Oct 30 03:34:00 CST 2018 0 2079
Python手動實現kmeans聚類和調用sklearn實現

1. 算法步驟 隨機選取k個樣本點充當k個簇的中心點; 計算所有樣本點與各個簇中心之間的距離,然后把樣本點划入最近的簇中; 根據簇中已有的樣本點,重新計算簇中心; 重復步驟2和3,直到簇中心不再改變或改變很小。 2. 手動Python實現 import numpy ...

Thu Jul 02 04:26:00 CST 2020 0 1222
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM