原文:分類——決策樹模型(附有決策樹生成步驟)

一 決策樹的算法的學習 決策樹學習通常包括特征選擇 決策樹的生產 決策樹的修剪這三個步驟組成。這些決策樹學習的思想主要來自於ID 算法 C . 算法 CART算法,我學習了這三個算法后是覺得難度依次增加,考慮的問題由局部 gt 總體 gt 優化,下面會依次介紹三種算法個人學習心得,不妥之處,敬請指出。 特征選擇 三種算法分別對應三種不同的准則,ID 算法運用了信息增益,C . 算法運用了信息增益比 ...

2021-05-09 14:37 0 1977 推薦指數:

查看詳情

決策樹(一)決策樹分類

決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...

Fri Feb 28 01:08:00 CST 2020 0 3651
決策樹分類

決策樹分類   決策樹分類歸類於監督學習,能夠根據特征值一層一層的將數據集進行分類。它的有點在於計算復雜度不高,分類出的結果能夠很直觀的呈現,但是也會出現過度匹配的問題。使用ID3算法的決策樹分類第一步需要挑選出一個特征值,能夠將數據集最好的分類,之后遞歸構成分類。使用信息增益,來得到最佳 ...

Wed Apr 25 05:41:00 CST 2018 0 1088
決策樹模型

決策樹的目標是從一組樣本數據中,根據不同的特征和屬性,建立一棵樹形的分類結構。 決策樹的學習本質上是從訓練集中歸納出一組分類規則,得到與數據集矛盾較小的決策樹,同時具有很好的泛化能力。決策樹學習的損失函數通常是正則化的極大似然函數,通常采用啟發式方法,近似求解這一最優化問題。 算法原理 ...

Sat May 18 03:16:00 CST 2019 0 1504
決策樹生成

一、ID3算法 ID3算法的核心是在決策樹各個結點上應用信息增益准則選擇特征,遞歸地構建決策樹。具體方法是:從根結點(root node)開始,對結點計算所有可能的特征的信息增益,選擇信息增益最大的特征作為結點的特征,由該特征的不同取值建立子結點;再對子結點遞歸地調用以上方法,構建 ...

Mon Oct 22 01:44:00 CST 2018 0 787
決策樹模型

看到一篇關於決策樹比較好的文章,轉錄過來,內容如下: 決策樹 決策樹里面最重要的就是節點和分裂條件,直接決定了一棵的好壞。用一個簡單的例子先說明一下: 來一段情景對話: 母親:女兒,你也不小了,還沒對象!媽很揪心啊,這不托人給你找了個對象,明兒去見個面吧! 女兒:年紀 ...

Wed Dec 11 02:46:00 CST 2019 0 1651
決策樹分類算法

決策樹算法是一種歸納分類算法,它通過對 訓練集的學習,挖掘出有用的 規則,用於對 新集進行 預測。在其生成過程中,分割時屬性選擇度量指標是關鍵。通過屬性選擇度量,選擇出最好的將樣本分類的屬性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
決策樹分類原理

上一篇博客我們看了一個決策樹分類的例子,但是我們沒有深入決策樹分類的內部原理。 這節我們討論的決策樹分類的所有特征的特征值都是離散的,明白了離散特征值如何分類的原理,連續值的也不難理解。 決策樹分類的核心在於確定那一個特征的那一個特征值分類最有效,可能不同的場景,每個人采用的衡量方法也不一樣 ...

Mon Oct 17 23:53:00 CST 2016 0 2175
決策樹分類算法

數據挖掘系列(6)決策樹分類算法 從這篇開始,我將介紹分類問題,主要介紹決策樹算法、朴素貝葉斯、支持向量機、BP神經網絡、懶惰學習算法、隨機森林與自適應增強算法、分類模型選擇和結果評價。總共7篇,歡迎關注和交流。   這篇先介紹分類問題的一些基本知識,然后主要講述決策樹算法的原理、實現,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM