原文:AE(自動編碼器)與VAE(變分自動編碼器)簡單理解

AE Auto Encoder, 自動編碼器 AE的結構 如上圖所示,自動編碼器主要由兩部分組成:編碼器 Encoder 和解碼器 Decoder 。編碼器和解碼器可以看作是兩個函數,一個用於將高維輸入 如圖片 映射為低維編碼 code ,另一個用於將低維編碼 code 映射為高維輸出 如生成的圖片 。這兩個函數可以是任意形式,但在深度學習中,我們用神經網絡去學習這兩個函數。 那如何去學呢 這里以 ...

2021-04-21 18:49 0 375 推薦指數:

查看詳情

PyTorch實現簡單自動編碼器VAE

在上一篇博客中我們介紹並實現了自動編碼器,本文將用PyTorch實現自動編碼器(Variational AutoEncoder, VAE)。自動編碼器原理與一般的自動編碼器的區別在於需要在編碼過程增加一點限制,迫使它生成的隱含向量能夠粗略的遵循標准正態分布。這樣一來,當需要生成 ...

Tue Mar 31 06:25:00 CST 2020 0 1486
CVAE(條件自動編碼器簡單理解

簡介 之前的文章介紹了AEVAE,指出了它們的優缺點。AE適合數據壓縮與還原,不適合生成未見過的數據。VAE適合生成未見過的數據,但不能控制生成內容。本文所介紹的CVAE(Conditional VAE)可以在生成數據時通過指定其標簽來生成想生成的數據。CVAE的結構圖如下所示 ...

Sat Apr 24 17:44:00 CST 2021 0 901
堆疊式自動編碼器

堆疊式自動編碼器 自動編碼器可以具有多個隱藏層。在這種情況下,它們被稱為堆疊式自動編碼器(或深度自動編碼器)。添加更多的層有助於自動編碼器學習更多的復雜的編碼。就是說,要注意不要使自動編碼器過於強大。想象一個強大的編碼器,它只是學會了把每個輸入映射到單個任意數字(而解碼則學習反向映射)。顯然 ...

Fri Jan 07 02:16:00 CST 2022 0 1836
深度自動編碼器

深度自動編碼器由兩個對稱的深度置信網絡組成,其中一個深度置信網絡通常有四到五個淺層,構成負責編碼的部分,另一個四到五層的網絡則是解碼部分。 這些層都是受限玻爾茲曼機(RBM)(注:也可以采用自編碼器預訓練?),即構成深度置信網絡的基本單元,它們有一些特殊之處,我們將在下文中介紹。以下是簡化的深度 ...

Thu Jul 25 07:07:00 CST 2019 0 702
去噪自動編碼器

降噪自動編碼器是一種用於圖像去噪無監督的反饋神經網絡 原理如下圖所示 訓練代碼如下 測試代碼如下 打賞 如果對您有幫助,就打賞一下吧O(∩_∩)O ...

Mon May 25 23:21:00 CST 2020 0 770
PyTorch實現簡單自動編碼器autoencoder

自動編碼器包括編碼器(Encoder)和解碼(Decoder)兩部分,編碼器和解碼都可以是任意的模型,目前神經網絡模型用的較多。輸入的數據經過神經網絡降維到一個編碼(coder),然后又通過一個神經網絡去解碼得到一個與原輸入數據一模一樣的生成數據,然后通過比較這兩個數據,最小化 ...

Thu Mar 26 06:57:00 CST 2020 0 4231
稀疏自動編碼自動編碼器和稀疏性

到目前為止,已經敘述了神經網絡的監督學習,即學習的樣本都是有標簽的。現在假設我們有一個沒有標簽的訓練集,其中. 自動編碼器就是一個運用了反向傳播進行無監督學習的神經網絡,學習的目的就是為了讓輸出值和輸入值相等,即.下面就是一個自動編碼器自動編碼器試圖學習一個函數. 換句話說,它試圖逼近 ...

Tue Oct 14 18:55:00 CST 2014 0 3512
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM