的多個 redis 實例在內存配置和 cpu 配置上都是一致的,所以一旦出現訪問量傾斜或者數據量傾斜,則可 ...
數據傾斜的原因: . 存在bigkey 業務層避免bigkey 將集合類型的bigkey拆分為多個小集合 . slot手工分配不均 . hashtag 導致數據分配到同一個slot 避免使用hashtag 訪問傾斜的原因: . 存在熱點數據 如果是只讀數據,可以使用多副本 key 隨機值使數據分配到不同的實例中 或者存儲在二級緩存 比如jvm緩存中 如果是讀寫數據,增加實例配置 ...
2021-04-14 09:57 0 331 推薦指數:
的多個 redis 實例在內存配置和 cpu 配置上都是一致的,所以一旦出現訪問量傾斜或者數據量傾斜,則可 ...
參考:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842860.html 在做Shuffle階段的優化過程中,遇到了數據傾斜的問題,造成了對一些情況下優化效果不明顯。主要是因為在Job完成后的所得到的Counters是整個Job的總和 ...
秒殺過程:庫存查驗、庫存扣減和訂單處理:在庫存查驗過程:支撐大量高並發的庫存查驗請求,我們需要在這個環節使用 Redis 保存庫存量,這樣一來,請求可以直接從 Redis 中讀取庫存並進行查驗。 訂單處理可以在數據庫中執行,但庫存扣減操作,不能交給后端數據庫處理。在數據庫中處理訂單的原因比較簡單 ...
數據傾斜調優 調優概述 有的時候,我們可能會遇到大數據計算中一個最棘手的問題——數據傾斜,此時Spark作業的性能會比期望差很多。數據傾斜調優,就是使用各種技術方案解決不同類型的數據傾斜問題,以保證Spark作業的性能。 數據傾斜發生時的現象 絕大多數task執行得都非常快,但個別 ...
spark數據傾斜處理 危害: 當出現數據傾斜時,小量任務耗時遠高於其它任務,從而使得整體耗時過大,未能充分發揮分布式系統的並行計算優勢。 當發生數據傾斜時,部分任務處理的數據量過大,可能造成內存不足使得任務失敗,並進而引進整個應用失敗。 表現:同一個 ...
一、數據傾斜 1、什么是數據傾斜? 由於數據分布不均勻,造成數據大量的集中到一點,造成數據熱點。 數據傾斜原理 目前我們所知道的大數據處理框架,比如 Flink、Spark、Hadoop 等之所以能處理高達千億的數據,是因為這些框架都利用了分布式計算的思想,集群中多個計算節點並行,使得數據 ...
運行不完,此稱之為數據傾斜。 1.萬能膏葯:hive.groupby.skewindata=true ...
Hive數據傾斜原因和解決辦法(Data Skew) 什么是數據傾斜(Data Skew)? 數據傾斜是指在原本應該並行處理的數據集中,某一部分的數據顯著多於其它部分,從而使得該部分數據的處理速度成為整個數據集處理的瓶頸 ...