算法介紹:梯度下降算法是一種利用一次導數信息求取目標函數極值的方法,也是目前應用最為廣泛的局部優化算法之一。其具有實現簡單、容易遷移、收斂速度較快的特征。在求解過程中,從預設的種子點開始,根據梯度信息逐步迭代更新,使得種子點逐漸向目標函數的極小值點移動,最終到達目標函數的極小值點。注意 ...
梯度下降 AdaGrad算法內容及實現 AdaGrad算法 在一般的優化算法中,目標函數自變量的每一個變量都采用統一的學習率來進行迭代。 w w eta frac partial f partial w , b b eta frac partial f partial b 但是AdaGrad算法根據自變量在每個維度的梯度值大小來調整各個維度上的學習率,從而避免統一的學習率難以適應所有維度的問題。 ...
2021-03-29 11:22 0 285 推薦指數:
算法介紹:梯度下降算法是一種利用一次導數信息求取目標函數極值的方法,也是目前應用最為廣泛的局部優化算法之一。其具有實現簡單、容易遷移、收斂速度較快的特征。在求解過程中,從預設的種子點開始,根據梯度信息逐步迭代更新,使得種子點逐漸向目標函數的極小值點移動,最終到達目標函數的極小值點。注意 ...
對梯度下降算法的理解和實現 梯度下降算法是機器學習程序中非常常見的一種參數搜索算法。其他常用的參數搜索方法還有:牛頓法、坐標上升法等。 以線性回歸為背景 當我們給定一組數據集合 \(D=\{(\mathbf{x^{(0)}},y^{(0)}),(\mathbf{x^{(1)}},y ...
一、梯度下降算法理論知識 我們給出一組房子面積,卧室數目以及對應房價數據,如何從數據中找到房價y與面積x1和卧室數目x2的關系? 為了實現監督學習,我們選擇采用 ...
1. 梯度下降 沿着目標函數梯度的反方向搜索極小值。 式中,$\theta$是模型參數,$J(\theta)$目標函數(損失函數),$\eta$是學習率。 2. 隨機梯度下降(SGD) 每次隨機選定一小批(mini-batch)數據進行梯度的計算,而不是計算全部的梯度。所有小批量 ...
...
一、梯度下降算法理論知識 我們給出一組房子面積,卧室數目以及對應房價數據,如何從數據中找到房價y與面積x1和卧室數目x2的關系? 為了實現監督學習,我們選擇采用自變量x1、x2的線性函數來評估因變量y值,得到 ...
梯度下降優化算法 梯度下降是常用的優化方式,具體的算法有: 梯度下降法 批梯度下降(Batch Gradient Descent, BGD) 隨機梯度下降(Stochastic Gradient Decent, SGD) 小批量梯度下降(Mini-Batch ...
先是幾個英文: linear regression線性回歸 gradient descent梯度下降 normal equations正規方程組 notation符號: m denote(指示) the number of training examples x denote ...