from:http://blog.csdn.net/u013989576/article/details/76215989 權值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均勻分布初始化(uniform ...
在神經網絡中,通常需要隨機初始化模型參數。下面我們來解釋這樣做的原因。 回顧多層感知機。為了方便解釋,假設輸出層只保留一個輸出單元 且隱藏層使用相同的激活函數。如果將每個隱藏單元的參數都初始化為相等的值,那么在正向傳播時每個隱藏單元將根據相同的輸入計算出相同的值,並傳遞至輸出層。在反向傳播中,每個隱藏單元的參數梯度值相等。因此,這些參數在使用基於梯度的優化算法迭代后值依然相等。之后的迭代也是如此。 ...
2021-02-16 09:57 0 394 推薦指數:
from:http://blog.csdn.net/u013989576/article/details/76215989 權值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均勻分布初始化(uniform ...
目錄 為什么要權值初始化? Xavier初始化 Kaiming初始化 pytorch中的初始化 pytorch搭建網絡自動初始化 為什么要權值初始化? 權重初始化的目的是:防止在深度神經網絡的正向(前向)傳播過程中層激活函數的輸出損失梯度爆炸 ...
1. 為什么要初始化權重 為了使網絡中的信息更好的傳遞,每一層的特征的方差(標准差)應該盡可能相等,否則可能會導致梯度爆炸或者消失。 權重初始化的目的是在深度神經網絡中前向傳遞時,阻止網絡層的激活函數輸出爆炸(無窮大)或者消失(0)。如果網絡層的輸出爆炸或者消失,損失函數的梯度 也會變得 ...
我們知道,訓練神經網絡的時候需先給定一個初試值,然后才能通過反向傳播等方法進行參數更新。所以參數的初始化也是門學問。 全0初始化:不能這么做!!! 為什么呢?因為這樣做會導致所有參數都無法被更新。 網絡上有好多解釋,感覺都不夠簡潔,其實這個原理很簡單。 我們想象一個三層的神經網絡,節點分別為 ...
1,概述 神經網絡中的權值初始化方法有很多,但是這些方法的設計也是遵循一些邏輯的,並且也有自己的適用場景。首先我們假定輸入的每個特征是服從均值為0,方差為1的分布(一般輸入到神經網絡的數據都是要做歸一化的,就是為了達到這個條件)。 為了使網絡中的信息更好的傳遞,每一層的特征的方差應該 ...
權重初始化 模型權重的初始化對於網絡的訓練很重要, 不好的初始化參數會導致梯度傳播問題, 降低訓練速度; 而好的初始化參數, 能夠加速收斂, 並且更可能找到較優解. 如果權重一開始很小,信號到達最后也會很小;如果權重一開始很大,信號到達最后也會很大。不合適的權重初始化會使得隱藏層的輸入 ...
1. 參數初始化的目的是什么? 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為0。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 ...
根據deeplearn.ai吳恩達深度學習課程3.11總結 因為如果W初始化為0 則對於任何Xi,每個隱藏層對應的每個神經元的輸出都是相同的,這樣即使梯度下降訓練,無論訓練多少次,這些神經元都是對稱的,無論隱藏層內有多少個結點,都相當於在訓練同一個函數。 ...