目錄 ResNet原理 ResNet實現 模型創建 數據加載 模型編譯 模型訓練 測試模型 訓練過程 ResNet原理 深層網絡在學習任務中取得了超越人眼的准確率,但是,經過實驗表明,模型的性能 ...
深度森林原理及實現 伯樂 一個不怎么上心的程序員 人贊同了該文章 思想 . 作者周志華認為學習樣本的差異性得到足夠體現的時候,集成學習的效果會得到相應的提高。 . 多樣的結構對集成學習是十分重要的。 . Deep Forest 就是基於該想法來設計實現的。 介紹 Deep Forest是傳統的森林在廣度和深度上的一種集成。 . 在深度上集成的目的:提高分類能力 . 在廣度上集成的目的:體現輸入數 ...
2021-01-14 10:01 0 457 推薦指數:
目錄 ResNet原理 ResNet實現 模型創建 數據加載 模型編譯 模型訓練 測試模型 訓練過程 ResNet原理 深層網絡在學習任務中取得了超越人眼的准確率,但是,經過實驗表明,模型的性能 ...
深度殘差收縮網絡其實是一種通用的特征學習方法,是深度殘差網絡ResNet、注意力機制和軟閾值化的集成,可以用於圖像分類。本文采用TensorFlow 1.0和TFLearn 0.3.2,編寫了圖像分類的程序,采用的圖像數據為CIFAR-10。CIFAR-10是一個非常常用的圖像數據集,包含10 ...
一說起“深度學習”,自然就聯想到它非常顯著的特點“深、深、深”(重要的事說三遍),通過很深層次的網絡實現准確率非常高的圖像識別、語音識別等能力。因此,我們自然很容易就想到:深的網絡一般會比淺的網絡效果好,如果要進一步地提升模型的准確率,最直接的方法就是把網絡設計得越深越好,這樣模型 ...
引言 對於傳統的深度學習網絡應用來說,網絡越深,所能學到的東西越多。當然收斂速度也就越慢,訓練時間越長,然而深度到了一定程度之后就會發現越往深學習率越低的情況,甚至在一些場景下,網絡層數越深反而降低了准確率,而且很容易出現梯度消失和梯度爆炸。 這種現象並不是由於過擬合導致的,過擬合 ...
一說起“深度學習”,自然就聯想到它非常顯著的特點“深、深、深”(重要的事說三遍 ),通過很深層次的網絡實現准確率非常高的圖像識別、語音識別等能力。因此,我們自然很容易就想到:深的網絡一般會比淺的網絡效果好,如果要進一步地提升模型的准確率,最直接的方法就是把網絡設計得越深越好,這樣模型的准確率也就 ...
我們都知道隨着神經網絡深度的加深,訓練過程中會很容易產生誤差的積累,從而出現梯度爆炸和梯度消散的問題,這是由於隨着網絡層數的增多,在網絡中反向傳播的梯度會隨着連乘變得不穩定(特別大或特別小),出現最多的還是梯度消散問題。殘差網絡解決的就是隨着深度增加網絡性能越來越差的問題 ...
基於上一篇resnet網絡結構進行實戰。 再來貼一下resnet的基本結構方便與代碼進行對比 resnet的自定義類如下: 訓練過程如下: 打印網絡結構和參數量如下: ...
本文解讀了一種新的深度注意力算法,即深度殘差收縮網絡(Deep Residual Shrinkage Network)。從功能上講,深度殘差收縮網絡是一種面向強噪聲或者高度冗余數據的特征學習方法。本文首先回顧了相關基礎知識,然后介紹了深度殘差收縮網絡的動機和具體實現,希望對大家有所幫助。 1. ...