#################################################################################################### ...
基尼指數 Gini不純度 表示在樣本集合中一個隨機選中的樣本被分錯的概率。 注意:Gini指數越小表示集合中被選中的樣本被參錯的概率越小,也就是說集合的純度越高,反之,集合越不純。當集合中所有樣本為一個類時,基尼指數為 . 基尼指數的計算方法為:其中,pk表示樣本屬於第k個類別的概率 舉例:根據天氣狀況預測是否打高爾夫,首先計算根節點的基尼指數:原始數據的基尼不純度計算:一共 條數據, 次No, ...
2021-01-11 21:57 0 1770 推薦指數:
#################################################################################################### ...
討論這個話題。本文想討論的是決策樹中兩個非常重要的決策指標:熵和基尼指數。熵和基尼指數都是用來定義隨機 ...
既能做分類,又能做回歸。分類:基尼值作為節點分類依據。回歸:最小方差作為節點的依據。 節點越不純,基尼值越大,熵值越大 pi表示在信息熵部分中有介紹,如下圖中介紹 方差越小越好。 選擇最小的那個0.3 ...
1 概念 CART決策樹使用"基尼指數" (Gini index)來選擇划分屬性,分類和回歸任務都可用。 基尼值Gini(D):從數據集D中隨機抽取兩個樣本,其類別標記不一致的概率 Gini(D)值越小,數據集D的純度越高。 2 計算 數據集 D ...
四、划分選擇 1、屬性划分選擇 構造決策樹的關鍵是如何選擇最優划分屬性。一般而言,隨着划分過程不斷進行,我們希望決策樹的分支結點所包含的樣本盡可能屬於同一類別,即結點的“純度”越來越高。 常用屬性划分的准則: (1)ID3:信息增益 (2)C4.5:增益率 ...
總是很容易忘記一些專業術語的公式,可以先理解再去記住 1.信息熵(entropy) 反正就是先計算每一類別的占比,然后再乘法,最后再將每一類加起來 其中distribution()的功能就是計算一個series各類的占比 2.基尼系數(GINI ...
決策樹學習基本算法 輸入:訓練集; 屬性集. 過程:函數 1: 生成結點node; 2: if 中樣本全屬於同一類別 then 3: 將node標記為類葉結點; return 4: end if 5: if 中樣本在上取值相同 then 6: 將node標記為葉 ...
一、基礎理解 決策樹結構中,每個節點處的數據集划分到最后,得到的數據集中一定只包含一種類型的樣本; 1)公式 k:數據集中樣本類型數量; Pi:第 i 類樣本的數量占總樣本數量的比例 2)實例計算基尼系數 3 種情況計算基 ...