原文:關於 RNN 循環神經網絡的反向傳播求導

關於 RNN 循環神經網絡的反向傳播求導 本文是對 RNN 循環神經網絡中的每一個神經元進行反向傳播求導的數學推導過程,下面還使用 PyTorch 對導數公式進行編程求證。 RNN 神經網絡架構 一個普通的 RNN 神經網絡如下圖所示: 其中 x langle t rangle 表示某一個輸入數據在 t 時刻的輸入 a langle t rangle 表示神經網絡在 t 時刻時的hidden st ...

2021-01-11 20:19 0 991 推薦指數:

查看詳情

循環神經網絡(RNN)模型與前向反向傳播算法

    在前面我們講到了DNN,以及DNN的特例CNN的模型和前向反向傳播算法,這些算法都是前向反饋的,模型的輸出和模型本身沒有關聯關系。今天我們就討論另一類輸出和模型間有反饋的神經網絡循環神經網絡(Recurrent Neural Networks ,以下簡稱RNN),它廣泛的用於自然語言處理 ...

Tue Mar 07 03:57:00 CST 2017 166 118160
神經網絡前向傳播反向傳播

神經網絡 神經網絡可以理解為一個輸入x到輸出y的映射函數,即f(x)=y,其中這個映射f就是我們所要訓練的網絡參數w,我們只要訓練出來了參數w,那么對於任何輸入x,我們就能得到一個與之對應的輸出y。只要f不同,那么同一個x就會產生不同的y,我們當然是想要獲得最符合真實數據的y,那么我們就要訓練 ...

Wed Sep 16 04:50:00 CST 2020 0 675
循環神經網絡RNN

html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100% } body { ...

Tue Jul 14 15:38:00 CST 2020 0 1111
循環神經網絡RNN

一、RNN簡介 循環神經網絡(Recurrent Neural Network,RNN)是一類專門用於處理時序數據樣本的神經網絡,它的每一層不僅輸出給下一層,同時還輸出一個隱狀態,給當前層在處理下一個樣本時使用。就像卷積神經網絡可以很容易地擴展到具有很大寬度和高度的圖像,而且一些卷積神經網絡還可 ...

Wed Oct 27 19:18:00 CST 2021 0 819
單層和雙層神經網絡反向傳播公式推導(從矩陣求導的角度)

最近在跟着Andrew Ng老師學習深度神經網絡.在學習淺層神經網絡(兩層)的時候,推導反向傳播公式遇到了一些困惑,網上沒有找到系統推導的過程.后來通過學習矩陣求導相關技巧,終於搞清楚了.首先從最簡單的logistics回歸(單層神經網絡)開始. logistics regression中的梯度 ...

Sat May 18 19:43:00 CST 2019 1 1286
神經網絡的梯度推導與代碼驗證》之vanilla RNN的前向傳播反向梯度推導

在本篇章,我們將專門針對vanilla RNN,也就是所謂的原始RNN這種網絡結構進行前向傳播介紹和反向梯度推導。更多相關內容請見《神經網絡的梯度推導與代碼驗證》系列介紹。 注意: 本系列的關注點主要在反向梯度推導以及代碼上的驗證,涉及到的前向傳播相對而言不會做太詳細的介紹 ...

Sat Sep 05 01:26:00 CST 2020 4 354
卷積神經網絡中的反向傳播

卷積神經網絡中的反向傳播 反向傳播是梯度下降法在神經網絡中應用,反向傳播算法讓神經網絡的訓練成為來可能。 首先要弄清一點,神經網絡的訓練過程就是求出一組較好的網絡權值的過程。反向傳播的直觀解釋就是先用當前網絡的權值計算結果,然后根據計算結果和真實結果的差值來更新網絡的權值,使得計算結果和真實 ...

Tue May 30 00:57:00 CST 2017 0 1427
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM