原文:機器學習深度研究:特征選擇中幾個重要的統計學概念

機器學習深度研究:特征選擇過濾法中幾個重要的統計學概念 卡方檢驗 方差分析 相關系數 p值 問題引出 當我們拿到數據並對其進行了數據預處理,但還不能直接拿去訓練模型,還需要選擇有意義的特征 即特征選擇 ,這樣做有四個好處: 避免維度災難 降低學習難度 減少過擬合 增強對特征和特征值之間的理解 常見的特征選擇有三種方法: 過濾法 Filter :先對數據集進行特征選擇,然后再訓練學習器,特征選擇過程 ...

2020-12-21 15:36 0 724 推薦指數:

查看詳情

機器學習的模型選擇特征選擇的基本方法

  模型選擇的標准是盡可能地貼近樣本真實的分布。但是在有限的樣本下,如果我們有多個可選模型,比如從簡單到復雜,從低階到高階,參數由少到多。那么我們怎么選擇模型呢,是對訓練樣本的擬合度越好就可以嗎?顯然不是,因為這樣做的話只會讓我們最終選擇出最復雜,最高階的模型。而這個模型的問題是過擬合 ...

Fri Jul 20 23:00:00 CST 2018 2 2626
機器學習特征選擇filter

來源地址:https://www.cnblogs.com/bjwu/p/9103002.html Filter-移除低均方差的特征 代碼: from sklearn.feature_selection import VarianceThreshold X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1 ...

Fri Mar 20 19:47:00 CST 2020 0 615
機器學習特征選擇

特征選擇方法初識: 1、為什么要做特征選擇在有限的樣本數目下,用大量的特征來設計分類器計算開銷太大而且分類性能差。2、特征選擇的確切含義將高維空間的樣本通過映射或者是變換的方式轉換到低維空間,達到降維的目的,然后通過特征選取刪選掉冗余和不相關的特征來進一步降維。3、特征選取的原則獲取盡可能小 ...

Fri Feb 24 03:36:00 CST 2017 0 40469
機器學習特征選擇方法

特征選擇是一個重要的數據預處理過程,在現實機器學習任務,獲得數據之后通常先進行特征選擇,此后在訓練學習器,如下圖所示: 進行特征選擇有兩個很重要的原因: 避免維數災難:能剔除不相關(irrelevant)或冗余(redundant )的特征,從而達到減少特征個數,提高模型精確度,減少 ...

Tue May 29 08:07:00 CST 2018 2 14184
機器學習特征選擇

1.特征選擇 特征選擇是降維的一種方法,即選擇對預測結果相關度高的特征或者消除相似度高的特征,以提高估計函數的准確率或者提高多維度數據集上的性能。 2.刪除低方差特征 1)思路:設置一個閥值,對每個特征求方差,如果所求方差低於這個閥值,則刪除此特征 ...

Thu Jul 06 22:23:00 CST 2017 0 1217
機器學習-特征選擇 Feature Selection 研究報告

注: 這個報告是我在10年7月的時候寫的(博士一年級),最近整理電腦的時候翻到,當時初學一些KDD上的paper的時候總結的,現在拿出來分享一下。 畢竟是初學的時候寫的,有些東西的看法也在變化,看的 ...

Wed Nov 28 05:46:00 CST 2012 7 11744
機器學習-特征選擇 Feature Selection 研究報告

原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 機器學習-特征選擇 Feature Selection 研究報告 注: 這個報告是我在10年7月的時候寫的(博士一年級),最近整理電腦的時候翻到 ...

Sun Nov 09 01:14:00 CST 2014 0 8225
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM