非線性支持向量機SVM 對於線性不可分的數據集, 我們引入了核(參考:核方法·核技巧·核函數)  $引進一個松弛變量$\xi_i ...
一.簡介 前兩節分別實現了硬間隔支持向量機與軟間隔支持向量機,它們本質上都是線性分類器,只是軟間隔對“異常點”更加寬容,它們對形如如下的螺旋數據都沒法進行良好分類,因為沒法找到一個直線(超平面)能將其分隔開,必須使用曲線(超曲面)才能將其分隔,而核技巧便是處理這類問題的一種常用 ...
線性可分支持向量機--SVM (1) 給定線性可分的數據集 假設輸入空間(特征向量)為,輸出空間為。 輸入 表示實例的特征向量,對應於輸入空間的點; 輸出 表示示例的類別。 線性可分支持向量機的定義: 通過間隔最大化或者等價的求出相應的凸二次規划問題得到的分離超平面 以及決策函數 ...
SVM-支持向量機 SVM(Support Vector Machine)-支持向量機,是一個功能非常強大的機器學習模型,可以處理線性與非線性的分類、回歸,甚至是異常檢測。它也是機器學習中非常熱門的算法之一,特別適用於復雜的分類問題,並且數據集為小型、或中型的數據集。 這章我們會解釋SVM里 ...
支持向量機(Support Vector Machine,簡稱 SVM)於 1995 年正式發表,由於其在文本分類任務中的卓越性能,很快就成為機器學習的主流技術。盡管現在 Deep Learning 很流行,SVM 仍然是一種很有的機器學習算法,在數據集小的情況下能比 Deep ...