1.什么是Bert? Bert用我自己的話就是:使用了transformer中encoder的兩階段兩任務兩版本的語言模型 沒錯,就是有好多2,每個2有什么意思呢? 先大體說一下,兩階段是指預訓練和微調階段,兩任務是指Mask Language和NSP任務,兩個版本是指Google發布 ...
參考: 李宏毅 深度學習人類語言處理 ELMo Embeddings from Language Models BERT Bidirectional Encoder Representations from Transformers ERNIE Enhanced Representation through Knowledge Integration Grover Generating aRtic ...
2020-10-09 16:57 0 580 推薦指數:
1.什么是Bert? Bert用我自己的話就是:使用了transformer中encoder的兩階段兩任務兩版本的語言模型 沒錯,就是有好多2,每個2有什么意思呢? 先大體說一下,兩階段是指預訓練和微調階段,兩任務是指Mask Language和NSP任務,兩個版本是指Google發布 ...
BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Large, Cased (Whole Word Masking): 24-layer ...
1. BERT簡介 Transformer架構的出現,是NLP界的一個重要的里程碑。它激發了很多基於此架構的模型,其中一個非常重要的模型就是BERT。 BERT的全稱是Bidirectional Encoder Representation from Transformer,如名稱所示 ...
1、預訓練模型 BERT是一個預訓練的模型,那么什么是預訓練呢?舉例子進行簡單的介紹 假設已有A訓練集,先用A對網絡進行預訓練,在A任務上學會網絡參數,然后保存以備后用,當來一個新的任務B,采取相同的網絡結構,網絡參數初始化的時候可以加載A學習好的參數,其他的高層參數隨機初始化 ...
我們在使用Bert進行微調的時候,通常都會使用bert的隱含層的輸出,然后再接自己的任務頭,那么,我們必須先知道bert的輸出都是什么,本文接下來就具體記錄下bert的輸出相關的知識。 由於我們微調bert的時候一般選用的是中文版的模型,因此,接下來我們加載的就是中文預訓練模型bert。直接看代碼 ...
在Bert的預訓練模型中,主流的模型都是以tensorflow的形勢開源的。但是huggingface在Transformers中提供了一份可以轉換的接口(convert_bert_original_tf_checkpoint_to_pytorch.py)。 但是如何在windows的IDE中執行 ...
在去年11月份,NLP大神Manning聯合谷歌做的ELECTRA一經發布,迅速火爆整個NLP圈,其中ELECTRA-small模型參數量僅為 BERT-base模型的1/10,性能卻依然能與BERT、RoBERTa等模型相媲美。 在前不久,谷歌終於開源了ELECTRA,並發布了預訓練模型,這對 ...
語言模型 語言模型是根據語言客觀事實對語言進行抽象數學建模。可以描述為一串單詞序列的概率分布: 通過極大化L可以衡量一段文本是否更像是自然語言(根據文本出現的概率): 函數P的核心在於,可以根據上文預測后面單詞的概率(也可以引入下文聯合預測)。 其中一種很常用的語言模型就是神經網絡 ...