原文:Numpy梯度下降反向傳播代碼實現

代碼 coding: utf import numpy as np N是批量大小 D in是輸入維度 H是隱藏的維度 D out是輸出維度。 N, D in, H, D out , , , 創建隨機輸入和輸出數據 x np.random.randn N, D in y np.random.randn N, D out 隨機初始化權重 w np.random.randn D in, H w np.r ...

2020-09-27 20:39 0 509 推薦指數:

查看詳情

梯度下降法與反向傳播

一、梯度下降法 1.什么是梯度下降法 順着梯度下滑,找到最陡的方向,邁一小步,然后再找當前位,置最陡的下山方向,再邁一小步… 通過比較以上兩個圖,可以會發現,由於初始值的不同,會得到兩個不同的極小值,所以權重初始值的設定也是十分重要的,通常的把W全部設置為0很容易掉到局部最優 ...

Mon Apr 17 00:06:00 CST 2017 0 14954
梯度下降反向傳播原理,計算圖

梯度下降原理及其過程:https://blog.csdn.net/qq_41800366/article/details/86583789 有限差分估計梯度: 寫起來簡單,但速度慢而且結果區分度不大 解析梯度: 計算圖: 反向傳播工作機制: 從輸出開始乘以每個節點 ...

Mon Jun 10 02:29:00 CST 2019 0 819
神經網絡系列之二 -- 反向傳播梯度下降

系列博客,原文在筆者所維護的github上:https://aka.ms/beginnerAI, 點擊star加星不要吝嗇,星越多筆者越努力。 第2章 神經網絡中的三個基本概念 2.0 通俗地理解三大概念 這三大概念是:反向傳播梯度下降,損失函數。 神經網絡訓練的最基本的思想就是:先“猜 ...

Fri Dec 20 19:11:00 CST 2019 2 1334
梯度下降和隨機梯度下降的區別和代碼實現

轉載:panghaomingme 批梯度下降和隨機梯度下降存在着一定的差異,主要是在theta的更新上,批量梯度下降使用的是將所有的樣本都一批次的引入到theta的計算中,而隨機梯度下降在更新theta時只是隨機選擇所有樣本中的一個,然后對theta求導,所以隨機梯度下降具有 ...

Fri May 18 20:26:00 CST 2018 0 1032
<反向傳播(backprop)>梯度下降法gradient descent的發展歷史與各版本

  梯度下降法作為一種反向傳播算法最早在上世紀由geoffrey hinton等人提出並被廣泛接受。最早GD由很多研究團隊各自獨立提出來,可大都無人問津,而hinton做的研究完整表述了GD方法,同時hinton為自己的研究多次走動人際關系使得其論文出現在了當時的《nature》上,因此GD得到 ...

Mon Oct 07 02:33:00 CST 2019 1 596
Pytorch-反向傳播梯度

1.感知機 單層感知機: 多層感知機: 2.鏈式法則求梯度 $y1 = w1 * x +b1$ $y2 = w2 * y1 +b2$ $\frac{dy_{2}}{^{dw_{1}}}= \frac{dy_{2}}{^{dy_{1}}}*\frac{dy_ ...

Sat Jul 11 04:42:00 CST 2020 0 1893
《神經網絡的梯度推導與代碼驗證》之vanilla RNN的前向傳播反向梯度推導

在本篇章,我們將專門針對vanilla RNN,也就是所謂的原始RNN這種網絡結構進行前向傳播介紹和反向梯度推導。更多相關內容請見《神經網絡的梯度推導與代碼驗證》系列介紹。 注意: 本系列的關注點主要在反向梯度推導以及代碼上的驗證,涉及到的前向傳播相對而言不會做太詳細的介紹 ...

Sat Sep 05 01:26:00 CST 2020 4 354
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM