在數據建模過程中,針對入模的數據需做數據清洗,特別針對缺失數據。 缺失數據比較多的情況下,可以考慮直接刪除;缺失數據較少的情況下,可對數據進行填充。 此時,fillna() 則派上用場。語法為: 創建測試數據框: 用0填充 用每列特征的均值填充 ...
pd.DataFrame.fillna 使用指定的方法填充NA NaN值 參數: values: dict, Series, or DataFrame,用於替換空值的值,該值不能是list,如果指定某列,則會是字典的形式 method: backfill , bfill , pad , ffill , None , default None,填充方法 向下填充,還是向上,和replace的用法一致 ...
2020-09-18 15:40 0 3957 推薦指數:
在數據建模過程中,針對入模的數據需做數據清洗,特別針對缺失數據。 缺失數據比較多的情況下,可以考慮直接刪除;缺失數據較少的情況下,可對數據進行填充。 此時,fillna() 則派上用場。語法為: 創建測試數據框: 用0填充 用每列特征的均值填充 ...
一、了解缺失值 通常使用 NA('not available')來代指缺失值 在Pandas的數據結構中,缺失值使用 NaN('Not a Number')進行標識 除了匯總統計方法,還可以使用isnull()來對數據中缺失的樣本占比、特征大致的缺失情況進行了 ...
1、數值型取列平均值,非數值型取眾數(頻數最大)。 2、加權平均 2.1 計算變量之間相關系數R,取1/R,再歸一化 2.2 歸一化方法:除總和,即為權重 其他多重插補、模型預測等方法,我不建 ...
(1)如果缺值的樣本占總數比例極高,我們可能就直接舍棄了,作為特征加入的話,可能反倒帶入noise,影響最后的結果了; (2)如果缺值的樣本適中,而該屬性非連續值特征屬性(比如說類目屬性),那就把NaN作為一個新類別,加到類別特征中; 【注:NaN ...
缺失值填充是數據預處理最基本的步驟,一般能想到的是固定值填充(均值等統計學方法)、根據與本列有相關關系的列函數表示來填充。這次我用的是em算法進行填充,具體原理后續補充。 主要記錄一下步驟: 工具欄:分析 菜單 ----> 缺失值分析------>彈出來的對話框:左邊是表格中 ...
python數據預處理之缺失值簡單處理:https://blog.csdn.net/Amy_mm/article/details/79799629 該博客總結比較詳細,感謝博主。 我們在進行模型訓練時,不可避免的會遇到某些特征出現空值的情況,下面整理了幾種填充空值的方法 1. 用固定值 ...
主要是方法: ...
類似的還有np.~isnan()函數,顧名思義就是實值檢測,對於非nan元素返回true,na ...