最近在維護xgboost二分類算子,經過現場客戶反饋的問題,模型在評估推理的時候,結果很不理想,實際測試確實模型預測全為1 一開始以為是數據不均勻導致的預測效果差,也嘗試了分布均衡的數據以及網格搜索模型參數調參,結果還是同樣的效果,問題沒出現在這里 接着經過debug后,發現 模型 ...
作者 LAKSHAY ARORA 編譯 VK 來源 Analytics Vidhya 概述 流數據是機器學習領域的一個新興概念 學習如何使用機器學習模型 如logistic回歸 使用PySpark對流數據進行預測 我們將介紹流數據和Spark流的基礎知識,然后深入到實現部分 介紹 想象一下,每秒有超過 條微博被發送, 多張照片被上傳到Instagram上,超過 個Skype電話被打,超過 個谷歌搜 ...
2020-09-17 23:35 0 727 推薦指數:
最近在維護xgboost二分類算子,經過現場客戶反饋的問題,模型在評估推理的時候,結果很不理想,實際測試確實模型預測全為1 一開始以為是數據不均勻導致的預測效果差,也嘗試了分布均衡的數據以及網格搜索模型參數調參,結果還是同樣的效果,問題沒出現在這里 接着經過debug后,發現 模型 ...
Keras是一個用於深度學習的Python庫,它包含高效的數值庫Theano和TensorFlow。 本文的目的是學習如何從csv中加載數據並使其可供Keras使用,如何用神經網絡建立多類分類的數據進行建模,如何使用scikit-learn評估Keras神經網絡模型 ...
cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:驗證某個模型在某個訓練集上的穩定性,輸出k個預測精度。 K折交叉驗證(k-fold) 把初始訓練樣本分成k份,其中(k-1)份被用作訓練集,剩下一份被用作評估集,這樣一共可以對 ...
Keras是一個用於深度學習的Python庫,它包含高效的數值庫Theano和TensorFlow。 本文的目的是學習如何從csv中加載數據並使其可供Keras使用,如何用神經網絡建立多類分類的數據進行建模,如何使用scikit-learn評估Keras神經網絡模型。 前言,對兩分 ...
分類模型的預測目標是:類別編號 回歸模型的預測目標是:實數變量 回歸模型種類 線性模型 最小二乘回歸模型 應用L2正則化時--嶺回歸(ridge regression) 應用L1正則化時--LASSO(Least Absolute ...
前半部分是簡介, 后半部分是案例 KNN近鄰算法: 簡單說就是采用測量不同特征值之間的距離方法進行分類(k-Nearest Neighbor,KNN) 優點: 精度高、對異常值不敏感、無數據輸入假定 缺點:時間復雜度高、空間復雜度高 1、當樣本不平衡時,比如一個類的樣本容量很大 ...
准備環境 anaconda ipython PYTHONPATH 運行環境 數據 1. 獲取原始數據 1682 u'1|24|M|technician|85711' u'1|Toy Story (1995 ...
實驗是最能定義數據科學家日常生活的詞。為了為給定的問題構建一個合適的機器學習模型,數據科學家需要訓練多個模型。此過程包括諸如尋找模型的最佳超參數、使用 K 折交叉驗證模型,有時甚至訓練具有多個輸出的模型等任務。前面提到的所有這些任務都很耗時,但對於模型開發的成功來說卻極為重要。在這篇博文中 ...