准備環境
anaconda
nano ~/.zshrc
export PATH=$PATH:/anaconda/bin
source ~/.zshrc
echo $HOME
echo $PATH
ipython
conda update conda && conda update ipython ipython-notebook ipython-qtconsole conda install scipy
PYTHONPATH
export SPARK_HOME=/Users/erichan/garden/spark-1.5.1-bin-hadoop2.6 export PYTHONPATH=${SPARK_HOME}/python/:${SPARK_HOME}/python/lib/py4j-0.8.2.1-src.zip
運行環境
cd $SPARK_HOME
IPYTHON=1 IPYTHON_OPTS="--pylab" ./bin/pyspark
數據
1. 獲取原始數據
PATH = "/Users/erichan/sourcecode/book/Spark機器學習" user_data = sc.textFile("%s/ml-100k/u.user" % PATH) user_fields = user_data.map(lambda line: line.split("|")) movie_data = sc.textFile("%s/ml-100k/u.item" % PATH) movie_fields = movie_data.map(lambda lines: lines.split("|")) rating_data_raw = sc.textFile("%s/ml-100k/u.data" % PATH) rating_data = rating_data_raw.map(lambda line: line.split("\t"))
num_movies = movie_data.count() print num_movies
1682
user_data.first()
u'1|24|M|technician|85711'
movie_data.first()
u'1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0'
rating_data_raw.first()
u'196\t242\t3\t881250949'
2. 探索數據
2.1. 按列統計
num_users = user_fields.map(lambda fields: fields[0]).count() num_genders = user_fields.map(lambda fields: fields[2]).distinct().count() num_occupations = user_fields.map(lambda fields: fields[3]).distinct().count() num_zipcodes = user_fields.map(lambda fields: fields[4]).distinct().count() ratings = rating_data.map(lambda fields: int(fields[2])) num_ratings = ratings.count() max_rating = ratings.reduce(lambda x, y: max(x, y)) min_rating = ratings.reduce(lambda x, y: min(x, y)) mean_rating = ratings.reduce(lambda x, y: x + y) / float(num_ratings) median_rating = np.median(ratings.collect()) ratings_per_user = num_ratings / num_users ratings_per_movie = num_ratings / num_movies print "Users: %d, genders: %d, occupations: %d, ZIP codes: %d" % (num_users, num_genders, num_occupations, num_zipcodes)
Users: 943, genders: 2, occupations: 21, ZIP codes: 795
print "Min rating: %d" % min_rating
Min rating: 1
print "Max rating: %d" % max_rating
Max rating: 5
print "Average rating: %2.2f" % mean_rating
Average rating: 3.53
print "Median rating: %d" % median_rating
Median rating: 4
print "Average # of ratings per user: %2.2f" % ratings_per_user
Average # of ratings per user: 106.00
print "Average # of ratings per movie: %2.2f" % ratings_per_movie
Average # of ratings per movie: 59.00
ratings.stats()
(count: 100000, mean: 3.52986, stdev: 1.12566797076, max: 5, min: 1)
2.2. 使用matplotlib的hist函數繪制直方圖
ages = user_fields.map(lambda x: int(x[1])).collect() hist(ages, bins=20, color='lightblue', normed=True) fig = matplotlib.pyplot.gcf() fig.set_size_inches(16, 10)
count_by_rating = ratings.countByValue() x_axis = np.array(count_by_rating.keys()) y_axis = np.array([float(c) for c in count_by_rating.values()]) # we normalize the y-axis here to percentages y_axis_normed = y_axis / y_axis.sum() pos = np.arange(len(x_axis)) width = 1.0 ax = plt.axes() ax.set_xticks(pos + (width / 2)) ax.set_xticklabels(x_axis) plt.bar(pos, y_axis_normed, width, color='lightblue') plt.xticks(rotation=30) fig = matplotlib.pyplot.gcf() fig.set_size_inches(16, 10)
count_by_occupation = user_fields.map(lambda fields: (fields[3], 1)).reduceByKey(lambda x, y: x + y).collect() x_axis1 = np.array([c[0] for c in count_by_occupation]) y_axis1 = np.array([c[1] for c in count_by_occupation]) x_axis = x_axis1[np.argsort(y_axis1)] y_axis = y_axis1[np.argsort(y_axis1)] pos = np.arange(len(x_axis)) width = 1.0 ax = plt.axes() ax.set_xticks(pos + (width / 2)) ax.set_xticklabels(x_axis) plt.bar(pos, y_axis, width, color='lightblue') plt.xticks(rotation=30) fig = matplotlib.pyplot.gcf() fig.set_size_inches(16, 10)
2.3. 使用countByValue函數統計
count_by_occupation2 = user_fields.map(lambda fields: fields[3]).countByValue() print "Map-reduce approach:" print dict(count_by_occupation2)
{u'administrator': 79, u'retired': 14, u'lawyer': 12, u'healthcare': 16, u'marketing': 26, u'executive': 32, u'scientist': 31, u'student': 196, u'technician': 27, u'librarian': 51, u'programmer': 66, u'salesman': 12, u'homemaker': 7, u'engineer': 67, u'none': 9, u'doctor': 7, u'writer': 45, u'entertainment': 18, u'other': 105, u'educator': 95, u'artist': 28}
print "" print "countByValue approach:" print dict(count_by_occupation)
{u'administrator': 79, u'writer': 45, u'retired': 14, u'lawyer': 12, u'doctor': 7, u'marketing': 26, u'executive': 32, u'none': 9, u'entertainment': 18, u'healthcare': 16, u'scientist': 31, u'student': 196, u'educator': 95, u'technician': 27, u'librarian': 51, u'programmer': 66, u'artist': 28, u'salesman': 12, u'other': 105, u'homemaker': 7, u'engineer': 67}
2.4. 使用filter轉換
def convert_year(x): try: return int(x[-4:]) except: return 1900 years = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x)) years_filtered = years.filter(lambda x: x != 1900) movie_ages = years_filtered.map(lambda yr: 1998-yr).countByValue() values = movie_ages.values() bins = movie_ages.keys() hist(values, bins=bins, color='lightblue', normed=True)
(array([ 0. , 0.07575758, 0.09090909, 0.09090909, 0.18181818,
0.18181818, 0.04545455, 0.07575758, 0.07575758, 0.03030303,
0. , 0.01515152, 0.01515152, 0.03030303, 0. ,
0.03030303, 0. , 0. , 0. , 0. ,
0. , 0. , 0.01515152, 0. , 0.01515152,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.01515152, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.01515152, 0. , 0. , 0. , 0. ]),
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 72, 76]),
)
fig = matplotlib.pyplot.gcf() fig.set_size_inches(16,10)
2.5. 使用groupByKey分組
# to compute the distribution of ratings per user, we first group the ratings by user id user_ratings_grouped = rating_data.map(lambda fields: (int(fields[0]), int(fields[2]))).groupByKey() # then, for each key (user id), we find the size of the set of ratings, which gives us the # ratings for that user user_ratings_byuser = user_ratings_grouped.map(lambda (k, v): (k, len(v))) user_ratings_byuser.take(5)
[(2, 62), (4, 24), (6, 211), (8, 59), (10, 184)]
user_ratings_byuser_local = user_ratings_byuser.map(lambda (k, v): v).collect() hist(user_ratings_byuser_local, bins=200, color='lightblue', normed=True)
fig = matplotlib.pyplot.gcf() fig.set_size_inches(16,10)
3. 處理轉換
3.1. 填充缺失
years_pre_processed = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x)).filter(lambda yr: yr != 1900).collect() years_pre_processed_array = np.array(years_pre_processed) # first we compute the mean and median year of release, without the 'bad' data point mean_year = np.mean(years_pre_processed_array[years_pre_processed_array!=1900]) median_year = np.median(years_pre_processed_array[years_pre_processed_array!=1900]) idx_bad_data = np.where(years_pre_processed_array==1900)[0] years_pre_processed_array[idx_bad_data] = median_year print "Mean year of release: %d" % mean_year
Mean year of release: 1989
print "Median year of release: %d" % median_year
Median year of release: 1995
print "Index of '1900' after assigning median: %s" % np.where(years_pre_processed_array == 1900)[0]
Index of '1900' after assigning median: []
4. 提取特征
4.1. 類別特征(norminal變量/ordinal變量)
all_occupations = user_fields.map(lambda fields: fields[3]).distinct().collect() all_occupations.sort() # create a new dictionary to hold the occupations, and assign the "1-of-k" indexes idx = 0 all_occupations_dict = {} for o in all_occupations: all_occupations_dict[o] = idx idx +=1 # try a few examples to see what "1-of-k" encoding is assigned print "Encoding of 'doctor': %d" % all_occupations_dict['doctor'] print "Encoding of 'programmer': %d" % all_occupations_dict['programmer']
Encoding of 'doctor': 2
Encoding of 'programmer': 14
numpy的zeros函數
K = len(all_occupations_dict) binary_x = np.zeros(K) k_programmer = all_occupations_dict['programmer'] binary_x[k_programmer] = 1 print "Binary feature vector: %s" % binary_x print "Length of binary vector: %d" % K
Binary feature vector: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
- 0. 0.] Length of binary vector: 21
4.2. 派生特征
時間戳轉換為類別特征
def extract_datetime(ts): import datetime return datetime.datetime.fromtimestamp(ts) def assign_tod(hr): times_of_day = { 'morning' : range(7, 12), 'lunch' : range(12, 15), 'afternoon' : range(15, 18), 'evening' : range(18, 23), 'night' : {23,24,0,1,2,3,4,5,6,7} } for k, v in times_of_day.iteritems(): if hr in v: return k timestamps = rating_data.map(lambda fields: int(fields[3])) hour_of_day = timestamps.map(lambda ts: extract_datetime(ts).hour) # now apply the "time of day" function to the "hour of day" RDD time_of_day = hour_of_day.map(lambda hr: assign_tod(hr)) timestamps.take(5)
[881250949, 891717742, 878887116, 880606923, 886397596]
hour_of_day.take(5)
[23, 3, 15, 13, 13]
time_of_day.take(5)
['night', 'night', 'afternoon', 'lunch', 'lunch']
4.3. 文本特征
def extract_title(raw): import re grps = re.search("\((\w+)\)", raw) if grps: return raw[:grps.start()].strip() else: return raw raw_titles = movie_fields.map(lambda fields: fields[1]) for raw_title in raw_titles.take(5): print extract_title(raw_title)
Toy Story
GoldenEye
Four Rooms
Get Shorty
Copycat
movie_titles = raw_titles.map(lambda m: extract_title(m)) # next we tokenize the titles into terms. We'll use simple whitespace tokenization title_terms = movie_titles.map(lambda t: t.split(" ")) print title_terms.take(5)
[[u'Toy', u'Story'], [u'GoldenEye'], [u'Four', u'Rooms'], [u'Get', u'Shorty'], [u'Copycat']]
flatMap
all_terms = title_terms.flatMap(lambda x: x).distinct().collect() # create a new dictionary to hold the terms, and assign the "1-of-k" indexes idx = 0 all_terms_dict = {} for term in all_terms: all_terms_dict[term] = idx idx +=1 num_terms = len(all_terms_dict) print "Total number of terms: %d" % num_terms
Total number of terms: 2645
print "Index of term 'Dead': %d" % all_terms_dict['Dead']
Index of term 'Dead': 147
print "Index of term 'Rooms': %d" % all_terms_dict['Rooms']
Index of term 'Rooms': 1963
zipWithIndex
all_terms_dict2 = title_terms.flatMap(lambda x: x).distinct().zipWithIndex().collectAsMap() print "Index of term 'Dead': %d" % all_terms_dict2['Dead'] print "Index of term 'Rooms': %d" % all_terms_dict2['Rooms']
Index of term 'Dead': 147
Index of term 'Rooms': 1963
創建稀疏向量/廣播變量
scipy depends $PYTHONPATH
def create_vector(terms, term_dict): from scipy import sparse as sp x = sp.csc_matrix((1, num_terms)) for t in terms: if t in term_dict: idx = term_dict[t] x[0, idx] = 1 return x all_terms_bcast = sc.broadcast(all_terms_dict) term_vectors = title_terms.map(lambda terms: create_vector(terms, all_terms_bcast.value)) term_vectors.take(5)
[<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>,
<1x2645 sparse matrix of type ''
with 1 stored elements in Compressed Sparse Column format>]
4.4. 正則化特征
np.random.seed(42) x = np.random.randn(10) norm_x_2 = np.linalg.norm(x) normalized_x = x / norm_x_2 print "x:\n%s" % x print "2-Norm of x: %2.4f" % norm_x_2 print "Normalized x:\n%s" % normalized_x print "2-Norm of normalized_x: %2.4f" % np.linalg.norm(normalized_x)
x:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]
2-Norm of x: 2.5908
Normalized x:
[ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
0.60954584 0.29621508 -0.1812081 0.20941776]
2-Norm of normalized_x: 1.0000
from pyspark.mllib.feature import Normalizer normalizer = Normalizer() vector = sc.parallelize([x]) normalized_x_mllib = normalizer.transform(vector).first().toArray() print "x:\n%s" % x print "2-Norm of x: %2.4f" % norm_x_2 print "Normalized x MLlib:\n%s" % normalized_x_mllib print "2-Norm of normalized_x_mllib: %2.4f" % np.linalg.norm(normalized_x_mllib)
x:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]
2-Norm of x: 2.5908
Normalized x MLlib:
[ 0.19172213 -0.05336737 0.24999534 0.58786029 -0.09037871 -0.09037237
0.60954584 0.29621508 -0.1812.20941776]
2-Norm of normalized_x_mllib: 1.0000