機器學習概念 機器學習 (Machine Learning) 是近 20 多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。 機器學習理論主要是設計和分析一些讓計算機可以自動學習的算法。機器學習算法是一類從數據中自動分析獲得規律 ...
目錄 概念 決策樹的學習過程 決策樹三種常用方法 決策樹算法的參數 決策樹的總結 一 概念 決策樹 decision tree 是一種基本的分類與回歸方法。決策樹模型呈樹形結構,在分類問題中,表示基於特征對實例進行分類的過程。它可以認為是if then規則的集合,也可以認為是定義在特征空間與類空間上的條件概率分布。其主要優點是模型具有可讀性,分類速度快。學習時,利用訓練數據,根據損失函數最小化的原 ...
2020-08-24 10:14 0 2424 推薦指數:
機器學習概念 機器學習 (Machine Learning) 是近 20 多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。 機器學習理論主要是設計和分析一些讓計算機可以自動學習的算法。機器學習算法是一類從數據中自動分析獲得規律 ...
實習了一段時間,接觸了一些數據挖掘、機器學習的算法,先記錄下來方便以后的復習回顧: 一:決策樹概念 決策樹可以看做一個樹狀預測模型,它是由節點和有向邊組成的層次結構。樹中包含3中節點:根節點、內部節點、葉子節點。決策樹只有一個根節點,是全體訓練數據的集合。樹中每個內部節點都是一個分裂 ...
1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...
算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項中相應的特征屬性,並按照其值選擇輸出 ...
利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...
###決策樹基礎概念 在機器學習中,決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。Entropy (熵) 表示的是系統的凌亂程度,它是決策樹的決策依據,熵的概念來源於香儂的信息論。 ###決策樹的決策過程 選擇分裂特征:根據某一指標(信息增益,信息增益比或基尼 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、簡介 決策樹思想的來源非常朴素,程序設計中的條件分支結構就是if-else結構,最早的決策樹就是利用這類結構分割數據的一種分類學習方法 1.定義: 決策樹是一種樹形結構,其中每個內部節點表示一個 ...
決策樹算法是一種通用的機器學習算法,既可以執行分類也可以執行回歸任務,同時也是一種可以擬合復雜數據集的功能強大的算法; 一、可視化決策樹模型 通過以下代碼,我們使用iris數據集構建一個決策樹模型,我們使用數據的后兩個維度並設置決策樹的最大深度為2,最后通過export ...