預訓練語言模型的前世今生 - 從Word Embedding到BERT 本篇文章共 24619 個詞,一個字一個字手碼的不容易,轉載請標明出處: 預訓練語言模型的前世今生 - 從Word Embedding到BERT - 二十三歲的有德 目錄 一、預訓練 ...
語言模型 語言模型是根據語言客觀事實對語言進行抽象數學建模。可以描述為一串單詞序列的概率分布: 通過極大化L可以衡量一段文本是否更像是自然語言 根據文本出現的概率 : 函數P的核心在於,可以根據上文預測后面單詞的概率 也可以引入下文聯合預測 。 其中一種很常用的語言模型就是神經網絡語言模型。 神經網絡語言模型NNLM: 給定上文的單詞,利用神經網絡來預測當前位置的單詞。即最大化: 模型結構如下圖所 ...
2020-08-19 14:43 0 493 推薦指數:
預訓練語言模型的前世今生 - 從Word Embedding到BERT 本篇文章共 24619 個詞,一個字一個字手碼的不容易,轉載請標明出處: 預訓練語言模型的前世今生 - 從Word Embedding到BERT - 二十三歲的有德 目錄 一、預訓練 ...
目錄 簡介 預訓練任務簡介 自回歸語言模型 自編碼語言模型 預訓練模型的簡介與對比 ELMo 細節 ELMo的下游使用 GPT/GPT2 ...
自然語言處理中的語言模型預訓練方法(ELMo、GPT和BERT) 最近,在自然語言處理(NLP)領域中,使用語言模型預訓練方法在多項NLP任務上都獲得了不錯的提升,廣泛受到了各界的關注。就此,我將最近看的一些相關論文進行總結,選取了幾個代表性模型(包括ELMo [1],OpenAI GPT ...
隨着bert在NLP各種任務上取得驕人的戰績,預訓練模型在這不到一年的時間內得到了很大的發展,本系列的文章主要是簡單回顧下在bert之后有哪些比較有名的預訓練模型,這一期先介紹幾個國內開源的預訓練模型。 一,ERNIE(清華大學&華為諾亞) 論文:ERNIE: Enhanced ...
: 前向模型: 后向模型: 目標函數最大化: 詞向量的表示基於當 ...
1.什么是Bert? Bert用我自己的話就是:使用了transformer中encoder的兩階段兩任務兩版本的語言模型 沒錯,就是有好多2,每個2有什么意思呢? 先大體說一下,兩階段是指預訓練和微調階段,兩任務是指Mask Language和NSP任務,兩個版本是指Google發布 ...
本篇帶來Facebook的提出的兩個預訓練模型——SpanBERT和RoBERTa。 一,SpanBERT 論文:SpanBERT: Improving Pre-training by Representing and Predicting Spans GitHub:https ...
這是一篇還在雙盲審的論文,不過看了之后感覺作者真的是很有創新能力,ELECTRA可以看作是開辟了一條新的預訓練的道路,模型不但提高了計算效率,加快模型的收斂速度,而且在參數很小也表現的非常好。 論文:ELECTRA: PRE-TRAINING TEXT ENCODERS AS DIS ...