原文:最優化算法【共軛梯度法】

特點:具有超線性收斂速度,只需要計算梯度,避免計算二階導數 算法步驟 step : 給定初始值 x ,容許誤差 epsilon step : 計算梯度 g k nabla f x k ,if norm g k lt epsilon , break 輸出當前值 x k else to step step : begin cases d k g k, amp text k d k g k beta k ...

2020-08-09 18:56 0 663 推薦指數:

查看詳情

最優化方法課程總結三-- 最速下降法、牛頓和線性共軛梯度

故事繼續從選定方向的選定步長講起 首先是下降最快的方向 -- 負梯度方向衍生出來的最速下降法 最速下降法 顧名思義,選擇最快下降。包含兩層意思:選擇下降最快的方向,在這一方向上尋找最好的步長。到達后在下一個點重復該步驟。定方向 選步長 前進... 優化問題的模型:\(min f ...

Thu Dec 30 04:47:00 CST 2021 0 850
共軛方向共軛梯度

(FR)共軛梯度是介於最速下降法和牛頓之間的一個方法,相比最速下降法收斂速度快,並且不需要像牛頓一樣計算Hesse矩陣,只需計算一階導數 共軛梯度共軛方向的一種,意思是搜索方向都互相共軛 共軛的定義如下: 共軛梯度是一種典型的共軛方向,它的搜索方向是負 ...

Mon Jun 11 22:45:00 CST 2018 0 3787
優化方法總結:梯度下降法、牛頓、擬牛頓共軛梯度等等

概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整體極值即函數的最大/最小值,局部極值就是函數在有限鄰域內的最大/最小值。通常都希望能求得函數的整體 ...

Thu Apr 06 08:18:00 CST 2017 0 4302
共軛梯度(Python實現)

共軛梯度(Python實現) 使用共軛梯度,分別使用Armijo准則和Wolfe准則來求步長 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的極小值 運行結果 ...

Thu Dec 30 09:55:00 CST 2021 0 1602
梯度、模式搜索求解最優化問題

最優化問題中常常需要求解目標函數的最大值或最小值,比如SVM支持向量機算法需要求解分類之間最短距離,神經網絡中需要計算損失函數的最小值,分類樹問題需要計算熵的最小或最大值等等。如果目標函數可求導常用梯度,不能求導時一般選用模式搜索。 一、梯度求解最優問題 由數學分析知識可以知道 ...

Sat Apr 03 18:11:00 CST 2021 0 341
FR共軛梯度 matlab

% FR共軛梯度 function sixge x0=[1,0]'; [x,val,k]=frcg('fun','gfun',x0) end function f=fun(x) f=100*(x(1)^2-x(2))^2+(x(1)-1)^2; end function g ...

Thu Jun 28 23:44:00 CST 2018 0 1506
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM