https://www.zhihu.com/question/65064314/answer/1868894159 我是半路出家自學的機器學習和強化學習,以下僅分享我能接觸到的強化學習/RL的知識(可能學院派的看到的會不一樣) 基礎部分: 《Reinforcement Learning ...
源代碼:https: github.com higgsfield RL Adventure 在Pytorch . . 上解決bug后的復現版本:https: github.com lucifer DQN DQN Adventure: from Zero to State of the Art This is easy to follow step by step Deep Q Learning t ...
2020-08-08 17:15 0 655 推薦指數:
https://www.zhihu.com/question/65064314/answer/1868894159 我是半路出家自學的機器學習和強化學習,以下僅分享我能接觸到的強化學習/RL的知識(可能學院派的看到的會不一樣) 基礎部分: 《Reinforcement Learning ...
本文是對Arthur Juliani在Medium平台發布的強化學習系列教程的個人中文翻譯,該翻譯是基於個人分享知識的目的進行的,歡迎交流!(This article is my personal translation for the tutorial written and posted ...
轉自https://zhuanlan.zhihu.com/p/25239682 過去的一段時間在深度強化學習領域投入了不少精力,工作中也在應用DRL解決業務問題。子曰:溫故而知新,在進一步深入研究和應用DRL前,階段性的整理下相關知識點。本文集中在DRL的model-free方法 ...
程序主循環 環境模塊maze_env.py DQN模型RL_brain ...
在上一篇文章強化學習——DQN介紹 中我們詳細介紹了DQN 的來源,以及對於強化學習難以收斂的問題DQN算法提出的兩個處理方法:經驗回放和固定目標值。這篇文章我們就用代碼來實現 DQN 算法 一、環境介紹 1、Gym 介紹 本算法以及以后文章要介紹的算法都會使用 由 \(OpenAI ...
在強化學習(十)Double DQN (DDQN)中,我們講到了DDQN使用兩個Q網絡,用當前Q網絡計算最大Q值對應的動作,用目標Q網絡計算這個最大動作對應的目標Q值,進而消除貪婪法帶來的偏差。今天我們在DDQN的基礎上,對經驗回放部分的邏輯做優化。對應的算法是Prioritized ...
上篇文章強化學習——詳解 DQN 算法我們介紹了 DQN 算法,但是 DQN 還存在一些問題,本篇文章介紹針對 DQN 的問題的改進算法 一、Double DQN 算法 1、算法介紹 DQN的問題有:目標 Q 值(Q Target )計算是否准確?全部通過 \(max\;Q\) 來計算有沒有 ...
DQN 算法改進 (一)Dueling DQN Dueling DQN 是一種基於 DQN 的改進算法。主要突破點:利用模型結構將值函數表示成更加細致的形式,這使得模型能夠擁有更好的表現。下面給出公式,並定義一個新的變量: \[q(s_t, a_t)=v(s_t)+A(s_t, a_t ...