原文:Pytorch學習筆記12----損失函數nn.CrossEntropyLoss()、nn.NLLLoss()

.CrossEntropyLoss 損失函數 交叉熵主要是用來判定實際的輸出與期望的輸出的接近程度,為什么這么說呢,舉個例子:在做分類的訓練的時候,如果一個樣本屬於第K類,那么這個類別所對應的的輸出節點的輸出值應該為 ,而其他節點的輸出都為 ,即 , , , , . , ,這個數組也就是樣本的Label,是神經網絡最期望的輸出結果。也就是說用它來衡量網絡的輸出與標簽的差異,利用這種差異經過反向傳 ...

2020-08-03 18:20 0 847 推薦指數:

查看詳情

pytorch中的nn.CrossEntropyLoss()

nn.CrossEntropyLoss()這個損失函數和我們普通說的交叉熵還是有些區別。 $x$是模型生成的結果,$class$是數據對應的label $loss(x,class)=-log(\frac{exp(x[class])}{\sum_j exp(x[j])})=-x[class ...

Thu Dec 12 00:13:00 CST 2019 0 3235
nn.CrossEntropyLoss

nn.CrossEntropyLoss pytorch中交叉熵計算方式為: \[H(p,q) = -\sum p(i)logq(i) \] 其中,p為真實值矩陣,q為預測值矩陣 當P使用one-hot embedding時,只有在分類正確時 nn.CrossEntropyLoss ...

Sun Mar 06 00:28:00 CST 2022 0 916
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM