機器學習領域的決策樹,但卻是第一個有着復雜的統計學和概率論理論保證的決策樹(這些話太學術了,引自參考文 ...
機器學習實戰 決策樹CART簡介及分類樹實現 一:對比分類樹 CART回歸樹和CART分類樹的建立算法大部分是類似的,所以這里我們只討論CART回歸樹和CART分類樹的建立算法不同的地方。首先,我們要明白,什么是回歸樹,什么是分類樹。 兩者的區別在於樣本輸出: 除了概念的不同,CART回歸樹和CART分類樹的建立和預測的區別主要有下面兩點: 對於連續值的處理,我們知道CART分類樹采用的是用基尼系 ...
2020-07-14 22:19 18 1567 推薦指數:
機器學習領域的決策樹,但卻是第一個有着復雜的統計學和概率論理論保證的決策樹(這些話太學術了,引自參考文 ...
https://blog.csdn.net/weixin_43383558/article/details/84303339?utm_medium=distribute.pc_relevant_t0. ...
決策樹系列三—CART原理與代碼實現 本文系作者原創,轉載請注明出處:https ...
一、分類樹構建(實際上是一棵遞歸構建的二叉樹,相關的理論就不介紹了) 二、分類樹項目實戰 2.1 數據集獲取(經典的鳶尾花數據集) 描述: Attribute Information: 1. sepal length in cm 2. sepal width ...
課程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一、決策樹(Decision Tree)、口袋(Bagging),自適應增強(AdaBoost) Bagging和AdaBoost算法再分 ...
,在這些機器根據數據集創建規則是,就是機器學習的過程。 二,相關知識 1 決策樹算法 在 ...
1. 簡介 決策樹(Decision Tree)是在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。由於這種決策分支畫成圖形很像一棵樹的枝干,故稱決策樹。在機器學習中,決策樹是一個預測模型 ...
CART分類樹算法 特征選擇 我們知道,在ID3算法中我們使用了信息增益來選擇特征,信息增益大的優先選擇。在C4.5算法中,采用了信息增益比來選擇特征,以減少信息增益容易選擇特征值多的特征的問題。但是無論是ID3還是C4.5,都是基於信息論的熵模型的,這里面會涉及大量的對數運算。能不能簡化 ...