原文:sklearn實踐(一):kmeans聚類

sklearn實踐 一 :kmeans聚類 實踐往往比理論要經歷更多的挫折。 一 數據處理 官方給的案例里用的都是sklearn自帶的數據集,只要import之后便萬事大吉,但實際中我們采用的數據往往沒有那么規整,也不是可以一下就fit到模型里去的。經過這次經歷,打算整理一下大致思路,關於更高級 深入的數據處理,這篇文章不會涉及。 官方案例如下: 我的數據: 將dataframe轉置 去掉id這一 ...

2020-07-12 10:57 0 3798 推薦指數:

查看詳情

Kmeans聚類算法的Sklearn實現

一、KMeans算法原理 1.1 KMeans算法關鍵概念:簇與質心 簇:KMeans算法將一組N個樣本的特征矩陣X划分為K個無交集的簇,直觀上看是一組一組聚集在一起的數據,在一個簇中的數據就認為是同一類。簇就是聚類的結果表現。 質心:簇中所有數據的均值U通常被認為這個簇的“質心 ...

Mon May 10 04:12:00 CST 2021 0 2986
sklearn KMeans聚類算法(總結)

基本原理 Kmeans是無監督學習的代表,沒有所謂的Y。主要目的是分類,分類的依據就是樣本之間的距離。比如要分為K類。步驟是: 隨機選取K個點。 計算每個點到K個質心的距離,分成K個簇。 計算K個簇樣本的平均值作新的質心 循環2、3 位置不變,距離完成 距離 ...

Thu Nov 08 02:40:00 CST 2018 0 4932
python用sklearn進行聚類實踐

一、聚類方法理論 二、10個聚類方法的匯總 三、各個聚類方法單獨運行 1.庫安裝 首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示 ...

Thu May 06 03:03:00 CST 2021 0 7942
kmeans聚類

聚類算法介紹 k-means算法介紹 k-means聚類是最初來自於信號處理的一種矢量量化方法,現被廣泛應用於數據挖掘。k-means聚類的目的是將n個觀測值划分為k個類,使每個類中的觀測值距離該類的中心(類均值)比距離其他類中心都近。 k-means聚類的一個最大的問題是計算困難 ...

Sun Jul 01 01:59:00 CST 2018 0 1803
kmeans 聚類

K-Means 聚類是最常用的一種聚類算法,它的思想很簡單,對於給定的樣本集和用戶事先給定的 K 的個數,將數據集里所有的樣本划分成 K 個簇,使得簇內的點盡量緊密地連在一起,簇間的距離盡量遠。由於每個簇的中心點是該簇中所有點的均值計算而得,因此叫作 K-Means 聚類。 算法過程 ...

Sat Jan 26 01:28:00 CST 2019 0 2280
Kmeans聚類與層次聚類

聚類 聚類就是對大量未知標注的數據集,按數據的內在相似性將數據集划分為多個類別,使類別內的數據相似度較大而類別間的數據相似度較小. 數據聚類算法可以分為結構性或者分散性,許多聚類算法在執行之前,需要指定從輸入數據集中產生的分類個數。 1.分散式聚類算法,是一次性確定要產生的類別,這種算法也已 ...

Tue Mar 08 23:22:00 CST 2016 1 12741
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM