原文地址:https://blog.csdn.net/xys430381_1/article/details/82529397 feature map、卷積核、卷積核個數、filter、channel的概念解釋 feather map的理解 在cnn的每個卷積層,數據都是 ...
第一次接觸的時候,已經理解了,但是過了一段時間,就有點忘了下面這兩篇文章,不錯 可以幫助回憶與理解。 https: blog.csdn.net zyqdragon article details https: blog.csdn.net xys article details https: blog.csdn.net caomin hao article details ...
2020-07-10 16:48 0 855 推薦指數:
原文地址:https://blog.csdn.net/xys430381_1/article/details/82529397 feature map、卷積核、卷積核個數、filter、channel的概念解釋 feather map的理解 在cnn的每個卷積層,數據都是 ...
具體可以看這篇文章,寫的很詳細。https://blog.csdn.net/xys430381_1/article/details/82529397 ...
feature map、卷積核、卷積核個數、filter、channel的概念解釋 feather map的理解 在cnn的每個卷積層,數據都是以三維形式存在的。你可以把它看成許多個二維圖片疊在一起(像豆腐皮一樣),其中每一個稱為一個feature map。 feather map 是怎么生成 ...
權值共享基本上有兩種方法: 在同一特征圖和不同通道特征圖都使用共享權值,這樣的卷積參數是最少的,例如上一層為30*30*40,當使用3*3*120的卷積核進行卷積時,卷積參數為:3*3*120個.(卷積跟mlp有區別也有聯系一個神經元是平面排列,一個是線性排列) 第二種只在同一特征圖上 ...
1*1的卷積核在NIN、Googlenet中被廣泛使用,但其到底有什么作用也是一直困擾的問題,這里總結和歸納下在網上查到的自認為很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升維和降維 3)減少卷積核參數(簡化模型) 1 - 引入 在我學習吳恩達老師 ...
發現很多網絡使用1×1的卷積核,實際就是對輸入的一個比例縮放,因為1×1卷積核只有一個參數,這個核在輸入上滑動,就相當於給輸入數據乘以一個系數。(對於單通道和單個卷積核而言這樣理解是可以的) 對於多通道和多個卷積核的理解,1×1卷積核大概有兩方面的作用:1.實現跨通道的交互和信息整合(具有 ...
CNN中feature map、卷積核、卷積核的個數、filter、channel的概念解釋 參考鏈接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者寫的很好,解決了很多基礎問題。 feather map ...
以一張圖片作為開始吧: 這里的輸入數據是大小為(8×8)的彩色圖片,其中每一個都稱之為一個feature map,這里共有3個。所以如果是灰度圖,則只有一個feature map。 進行卷積操作時,需要指定卷積核的大小,圖中卷積核的大小為3,多出來的一維3不需要在代碼中指定,它會 ...